Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 171-178 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tabasi Haeri Z, Khajehnezhad A, Motevalizadeh L, Darabi E. The effect of yellow apple’s skin, red apple’s skin and Cercis siliquastrum’s Petals on Dye Sensitized Solar Cells Based on TiO2 Nanoparticles. www.ijcm.ir 2024; 32 (1) :171-178
URL: http://ijcm.ir/article-1-1857-en.html
1- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Physics Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:   (654 Views)

In the present work, yellow apple's skin, red apple's skin and Cercis siliquastrum’s petals have been used as pigments in dye-sensitized solar cells based on TiO2 nanoparticles. These pigments were extracted by a simple heat treatment method. In order to measure the absorption characteristics of pigments, ultraviolet-visible spectroscopy (Uv-Vis) analysis was used. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the structural characteristics and morphology of nanoparticles, respectively. The I-V curves of solar cells were drawn under standard conditions in light and dark states. The results show that the cells made using dyes extracted from yellow and red apple's skins and Cercis siliquastrum’s petals have short circuit currents of 27.49 μA, 58.50 μA and 173.85 μA, respectively, and their open circuit voltages are 0.53V, 0.53V and 0.55V, respectively. Their fill factors are equal to 0.56, 0.65 and 0.68 respectively and their efficiencies are 0.04%, 0.08% and 0.27% respectively.

Full-Text [PDF 774 kb]   (83 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Photovoltaics Report, Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG, Freiburg, 2017, www.ise.fraunhofer.de.
2. [2] O'Regan B.C., Gr¨ atzel M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films". Nature 353, 737 (1991). https://doi.org/10.1038/353737a0 [DOI:10.1038/ 353737a0.]
3. [3] S. J. Fonash, 2010 "Solar Cell Device Physics", Elsevier.
4. [4] O'Regan B., Gratzel M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films Nature", 353, 737-740. [DOI:10.1038/353737a0]
5. [5] Tulloch G. E., "Light and energy-dye solar cells for the 21st century", Journal of Photochemistry and Photobiology A: Chemistry 164, 209-219. [DOI:10.1016/S1010-6030(04)00109-1]
6. [6] Master Thesis, Essner J., "Dye sensitized solar cells: optimization of Gratzel solar cells towards plasmonic enhanced photovoltaics", Kansas State University, Manhattan, Kansas (2011).
7. [7] Hern' andez-Martínez A.R., Est'evez M., Vargas S., Rodríguez R., "Stabilized conversion efficiency and Dye-Sensitized solar cells from Beta vulgaris pigment", Int. J. Mol. Sci. 14 (2013) 4081-4093. https://doi.org/10.3390/ijms14024081 [DOI:10.3390/ijms14024081.]
8. [8] Bhogaita M., Shukla A.D., Nalini R.P., "Recent advances in hybrid solar cells based on natural dye extracts from Indian plant pigment as sensitizers", Sol. Energy 137 (2016) 212-224. https://doi.org/10.1016/j.solener.2016.08.003 [DOI:10.1016/j.solener.2016.08.003.]
9. [9] Aslam A., Mehmood U., Arshad M.H., Ishfaq A., Zaheer J., Ul Haq Khan A., Sufyan M., "Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications", Sol. Energy 207 (2020) 874-892. [DOI:10.1016/j.solener.2020.07.029]
10. https://doi.org/10.1016/j.solener.2020.07.029 [DOI:10.1016/j.solener.2020.07.029.]
11. [10] Song L., Jiang Q., Du P., Yang Y., Xiong J., Cui C., "Novel structure of TiO2-ZnO core shell rice grain for photoanode of dye-sensitized solar cells", J. Power Sources 261 (2014) 1-6. https://doi.org/10.1016/j.jpowsour.2014.03.030 [DOI:10.1016/j.jpowsour.2014.03.030.]
12. [11] Zhao H., Huang F., Hou J., Liu Z., Wu Q., Cao H., Jing Q., Peng S., Cao G., "Efficiency Enhancement of Quantum Dot Sensitized TiO2/ZnO Nanorod Arrays Solar Cells by Plasmonic Ag Nanoparticles", ACS Appl. Mater. Interf. 8 (2016c) 26675-26682. https://doi.org/10.1021/acsami.6b06386 [DOI:10.1021/acsami.6b06386.]
13. [12] Matos L.S., Amaral R.C., Murakami Iha N.Y., "New LbL-TiO2/ZnO Compact Films to Improve Performance of Dye-Sensitized Solar Cells", Chem. Select 4 (2019) 265-270. https://doi.org/10.1002/slct.201802491 [DOI:10.1002/slct.201802491.]
14. [13] Nien Y.-H., Hu G.-M., Rangasamy M., Yong Z.-R., Chou J.-C., Lai C.-H., Kuo P.-Y., Chang J.-X., Lin Y.-C., "Investigation on Photoanode Modified With TiO₂-ZnOAg Nanofibers in Dye-Sensitized Solar Cell Under Different Intensities of Illuminations", IEEE Trans. Electron Devices 1-7. (2020) [DOI:10.1109/ ted.2020.3024159.]
15. [14] Gao F., Wang Y., Shi D., Zhang J., Wang M., Jing X., Humphry-Baker R., Wang P., Zakeeruddin S.M., Gr¨ atzel M., "Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am", Chem. Soc. 130 (2008) 10720-10728. https://doi.org/10.1021/ja801942j [DOI:10.1021/ja801942j.]
16. [15] Ablialimov O., Kedziorek M., Malinska M., Wozniak K., Grela K., "Synthesis, structure, and catalytic activity of new ruthenium(II) indenylidene complexes bearing unsymmetrical N - heterocyclic carbenes", Organometallics 33 (2014) 2160-2171. https://doi.org/10.1021/om4009197 [DOI:10.1021/om4009197.]
17. [16] Toivola M., Halme J., Miettunen K., Aitola K., Land P. D, "Nanostructured dye solar cells on flexible substance- Review", International and Journal of Energy Research 33 (2009) 1145-1160. http://dx.doi.org/10.1002/er.1605 [DOI:10.1002/er.1605]
18. [17] Calogero G., Barichello J., Citro I., Mariani P., Vesce L., Bartolotta A., Di Carlo A., Di Marco G., "Photoelectrochemical and spectrophotometric studies on dyesensitized solar cells (DSCs) and stable modules (DSCMs) based on natural apocarotenoids pigments", Dye. Pigment. 155 (2018) 75-83. https://doi.org/10.1016/j.dyepig.2018.03.021 [DOI:10.1016/j. dyepig.2018.03.02.]
19. [18] Obi K., Frolova L., Fuierer P., "Preparation and performance of prickly pear (Opuntia phaeacantha) and mulberry (Morus rubra) dye-sensitized solar cells", Sol. Energy 208 (2020) 312-320. https://doi.org/10.1016/j.solener.2020.08.006 [DOI:10.1016/j.solener.2020.08.006.]
20. [19] Patni N., Pillai G.S., Sharma P., "Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dyesensitized solar cell", Int. J. Energy Res. https://doi.org/10.1002/er.5752 [DOI:10.1002/er.5752.]
21. [20] Dhafina W.A., Daud M.Z., Salleh H., "The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dyesensitized solar cells", Optik (Stuttg). (2020) 207 https://doi.org/10.1016/j.ijleo.2019.163808 [DOI:10.1016/j. ijleo.2019.163808.]
22. [21] Silva C., Santos A., Salazar R., Lamilla C., Pavez B., Meza P., Hunter R., Barrientos L., "Evaluation of dye sensitized solar cells based on a pigment obtained from Antarctic Streptomyces fildesensis", Sol. Energy 181 (2019) 379-385. https://doi.org/10.1016/j.solener.2019.01.035 [DOI:10.1016/j.solener.2019.01.035.]
23. [22] Orona-Navar A., Aguilar-Hern' andez I., Lopez-Luke ' T., Pacheco A., Ornelas-Soto N., "Dye Sensitized Solar Cell (DSSC) by Using a Natural Pigment from Microalgae", Int. J. Chem. Eng. Appl. 11 (2020) 14-17. https://doi.org/10.18178/ijcea.2020.11.1.772 [DOI:10.18178/ijcea.2020.11.1.772.]
24. [23] Iqbal M.Z., Ali S.R., Khan S., "Progress in dye sensitized solar cell by incorporating natural photosensitizers", Sol. Energy 181 (2019) 490-509. https://doi.org/ 10.1016/j.solener.2019.02.023. https://doi.org/10.1016/j.solener.2019.02.023 [DOI:10.1016/j.solener.2019.02.023.]
25. [24] Chandra Maurya I., Singh S., Srivastava P., Maiti B., Bahadur L., "Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies", Opt. Mater. (Amst) 90 (2019) 273-280. https://doi.org/10.1016/j.optmat.2019.02.037 [DOI:10.1016/j.optmat.2019.02.037.]
26. [25] Arulraj A., Senguttuvan G., Veeramani S., Sivakumar V., Subramanian B., "Photovoltaic performance of natural metal free photo-sensitizer for TiO2 based dye-sensitized solar cells", Optik (Stuttg). 181 (2019) 619-626. https://doi.org/10.1016/j.ijleo.2018.12.104 [DOI:10.1016/j. ijleo.2018.12.104.]
27. [26] Omar A., Ali M.S., Abd Rahim N., "Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept", A review. Sol. Energy 207 (2020) 1088-1121. [DOI:10.1016/j.solener.2020.07.028]
28. https://doi.org/10.1016/j.solener.2020.07.028 [DOI:10.1016/j.solener.2020.07.028.]
29. [27] Carvalho I.C., Barbosa M.L., Costa M.J.S., Longo E., Cavalcante L.S., Viana V.G.F., Santos R.S., "TiO2-based dye-sensitized solar cells prepared with bixin and norbixin natural dyes: Effect of 2,2'-bipyridine additive on the current and voltage", Optik (Stuttg) 218 (2020) 165236. https://doi.org/10.1016/j.ijleo.2020.165236 [DOI:10.1016/j.ijleo.2020.165236.]
30. [28] Yildiz Z.K., Atilgan A., Atli A., Ozel ¨ K., Altinkaya C., Yildiz A., "Enhancement of efficiency of natural and organic dye sensitized solar cells using thin film TiO2 photoanodes fabricated by spin-coating", J. Photochem. Photobiol. A Chem. 368 (2019) 23-29. https://doi.org/10.1016/j.jphotochem.2018.09.018 [DOI:10.1016/j.jphotochem.2018.09.018.]
31. [29] Maurya I.C., Singh S., Senapati S., Srivastava P., Bahadur L., "Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells", Sol. Energy 194 (2019) 952-958. [DOI:10.1016/j.solener.2019.10.090]
32. https://doi.org/10.1016/j.solener.2019.10.090 [DOI:10.1016/j.solener.2019.10.090.]
33. [30] Sharmila G., Thirumarimurugan M., Muthukumaran C., "Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities", Microchem. J. 145 (2019) 578-587. https://doi.org/10.1016/j.microc.2018.11.022 [DOI:10.1016/j.microc.2018.11.022.]
34. [31] Omar F.C., Alejandro P.L, Víctor Hugo R.A, Belkis S., Carlos Alberto G., "Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium", Processes 8 (2020) 1032. [DOI:10.3390/pr8091032]
35. [32] Kambiz H.P., Mohammad Hossein A.F, "Application of green walnut shell as a novel pigment in DSSC based on TiO2 nanoparticles", Iranian Journal of Biosystems Engineering 2017; 47(4): 746-739. https://doi: 10.22059/ijbse.2017.60271
36. [33] Narayan M.R.," Review:Dye sensitized solar cells based on natural photosensitizers", Renewable and sustainable Energy Reviews16 (2012) 208-215. [DOI:10.1016/j.rser.2011.07.148]
37. [34] Aldhi Saputro, Adlan Mizan,Nofrijon Sofyan, Akhmad Herman Yuwono, ''Investigating the effect of various extracting solvents on the potential use of red-apple skin (Malus domestica) as natural sensitizer for dye-sensitized solar cell'', AIP Conference Proceedings 1826, 020006 (2017). https://doi.org/10.1063/1.4979222 [DOI:10.1063/1.4979222.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb