Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 113-126 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Riyahi F, Shabanian N, Davoudian A. Fractal analysis of quartz grain boundary sutures gneissic granite of Abadchi, north of Shahrekord. www.ijcm.ir 2024; 32 (1) :113-126
URL: http://ijcm.ir/article-1-1854-en.html
1- Faculty of Natural Resources and Earth Sciences, Shahrekord University
Abstract:   (989 Views)
The granitic gneisses of Abadchi village is located in the north of Zayandeh-Rud dam, and the area is a part of Sanandaj-Sirjan Zone. The mineralogical composition of these rocks are composed of quartz, plagioclase, K-feldspar, biotite, amphibole, muscovite, zircon, titanite and allanite. Quartz crystals, as the most abundant mineral constituents of these rocks, display the different conditions of deformation dynamic on the studied rocks according to their texture. Moreover, quartz crystals show evidences of bulging recrystallization (BLG), sub grain rotation (SGR), and grain boundary migration (GBM). Deformation of quartz crystals depends on the temperature and strain-rate and can be determine using T/strain- rate diagram. Therefore, the fractal dimension at quartz grain boundary sutures is between 1.23 and 1.11 and temperatures between 250-400 °C and 500 -750 °C in the granitic gneisses. Using the fractal dimension and calculation of temperature, the strain rates are measured 10-11.6 to 10-6.6for the four domain of granitic gneiss sample. The results obtained from the diagram are consistent with the deformation evidence of quartz crystals (GBM, SGR, BLG).
Full-Text [PDF 916 kb]   (77 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Blenkinsop T., "Deformation Microstructures and Mechanisms in Minerals and Rocks", Kluwer, London, (2000).
2. [2] De Bresser J. H. P., C. J. Spiers., "Strength characteristics of the r, f, and c slip systems in calcite", Tectonophysics 272.1 (1997) 1-23. [DOI:10.1016/S0040-1951(96)00273-9]
3. [3] Masuda T., Miyake T., Kimura, N., Okamoto A., "Application of the microboudin method to paleodifferential stress analysis of deformed impure marbles from Syros, Greece: implications for grain-size and calcite-twin paleopiezometers", Journal of Structural Geology 33(2011) 20-31. [DOI:10.1016/j.jsg.2010.11.002]
4. [4] Molli G., White J.C., Kennedy L., Taini V., "Low-temperature deformation of limestone, Isola Palmaria, northern Apennine, Italy-the role of primary textures, precursory veins and intracrystalline deformation in localization", Journal of Structural Geology 33(2011) 255-270. [DOI:10.1016/j.jsg.2010.11.015]
5. [5] Passchier C.W., Trouw R.A.J., "Microtectonics", Springer, Berlin, (1996).
6. [6] Tullis T.E., "The use of mechanical twinning in minerals as a measure of shear stress magnitudes", Journal of Geophysical Research 85(1980) 6263-6268. [DOI:10.1029/JB085iB11p06263]
7. [7] Turner F.J., "Nature and dynamic interpretation of deformation lamellae in calcite of three marbles", American Journal of Science 251(1953) 276-298. [DOI:10.2475/ajs.251.4.276]
8. [8] Wenk H.R., Barber D., Reeder R., "Microstructures in carbonates. In: Reeder, R. (Ed.), Carbonates: Mineralogy and Chemistry", Am. Miner. Soc., Washington DC (1983) pp. 301-369. [DOI:10.1515/9781501508134-013]
9. [9] Wenk H.R., Rybacki E., Dresen G., Lonardelli I., Barton N., Franz H., Gonzalez G., "Dauphiné twinning and texture memory in polycrystalline quartz. Part 1: experimental deformation of novaculite", Physics and Chemistry of Minerals 33(2006)667-676. [DOI:10.1007/s00269-006-0115-9]
10. [10] Rybacki E., Evans B., Janssen C., Wirth R., Dresen G., "Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments", Tectonophysics 601(2013) 20-36. [DOI:10.1016/j.tecto.2013.04.021]
11. [11] Janssen C., Romer, R.L., Hoffmann-Rothe A., Kesten, D., Al-Zubi H., "The Dead Sea transform: evidence for a strong fault", Journal of Geology 112(2004) 561-575. [DOI:10.1086/422666]
12. [12] Burkhard M., "Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review", Journal of structural geology 15.3-5 (1993) 351-368. [DOI:10.1016/0191-8141(93)90132-T]
13. [13] Ferrill D. A., "Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone", Journal of Structural Geology 13.6 (1991) 667-675. [DOI:10.1016/0191-8141(91)90029-I]
14. [14] Ferrill D.A., Morrisb A. P., Evansc M. A., Burkhardd M., Groshong R. H., Jr., Onasch C.M., "Calcite twin morphology: a low-temperature deformation geothermometer", Journal of Structural Geology 26.8 (2004) 1521-1529. [DOI:10.1016/j.jsg.2003.11.028]
15. [15] Barber D. J., Wenk H. R., "Deformation twinning in calcite, dolomite and other rhombohedral carbonates", Physics and Chemistry of Minerals 5 (1979) 141-165. [DOI:10.1007/BF00307550]
16. [16] De Caritat P., Hutcheon I.A.N., Walshe J.L., "Chlorite geothermometry: a review. Clays and clay minerals", 41(2) (1993) 219-239. [DOI:10.1346/CCMN.1993.0410210]
17. [17] Vidal O., Parra T., Trotet F., "A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kb range", American journal of Science, 301(6) (2001) 557-592. [DOI:10.2475/ajs.301.6.557]
18. [18] Deer W.A., Howie R.A., Zussman J. eds., "Rock Forming Minerals: Layered Silicates Excluding Micas and Clay Minerals, Volume 3B", (No Title) (2009).
19. [19] Krivovichev S.V., Armbruster T., Organova N.I., Burns P.C., Seredkin M.V., Chukanov N.V., "Incorporation of sodium into the chlorite structure: the crystal structure of glagolevite, Na (Mg, Al) 6 [Si3AlO10] (OH, O) 8", American Mineralogist, 89(7) (2004) 1138-1141. [DOI:10.2138/am-2004-0727]
20. [20] Yavuz F., Kumral M., Karakaya N., Karakaya M.Ç. Yıldırım D.K., "A Windows program for chlorite calculation and classification", Computers & Geosciences, 81(2015) 101-113. [DOI:10.1016/j.cageo.2015.04.011]
21. [21] Jamshidi Badr M., Collins, A.S., Masoudi F., Cox, G., Mohajjel M., "The U-Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran", Turkish Journal of Earth Sciences 21(2013) 10-37. [DOI:10.3906/yer-1001-37]
22. [22] Davoudian A.R., Genser J., Dachs E., Shabanian N., "Petrology of eclogites fromnorth of Shahrekord, Sanandaj-Sirjan Zone, Iran", Mineralogy and Petrology 92 (2008) 393-413. [DOI:10.1007/s00710-007-0204-6]
23. [23] Mohajjel M., Fergusson C.L., "Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran", Journal of Structural Geology 22(2000) 1125-1139. [DOI:10.1016/S0191-8141(00)00023-7]
24. [24] Ghasemi A., Poor Kermani M., "Structure of the Soresat Metamorphic Complex, North Sanandaj-Sirjan Zone, northwest Iran", Australian Journal of Earth Sciences56 (2009) 939-949. [DOI:10.1080/08120090903005394]
25. [25] Alizadeh A., López Martínez M., Sarkarinejad K., "40Ar-39Ar geochronology in a gneiss dome within the Zagros Orogénic Belt", Comptes Rendus Geoscience 342 (2010) 837-846. [DOI:10.1016/j.crte.2010.07.005]
26. [26] Sheikholeslami M.R., Pique A., Mobayen P., Sabzehei M., Bellon H., Hashem Emami M., "Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri- Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran)", Journal of Asian Earth Sciences 31(2008) 504-521. [DOI:10.1016/j.jseaes.2007.07.004]
27. [27] Moritz R., Ghazban F., Singer B.S., "Eocene gold ore formation at Muteh, Sanandaj- Sirjan tectonic zone, Western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen", Economic Geology 101(2006) 1497-1524. [DOI:10.2113/gsecongeo.101.8.1497]
28. [28] Davoudian A.R., Shabanian N., Genser J., Neubauer F.," 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogeny", Gondwana Research 37 (2016) 216-240. [DOI:10.1016/j.gr.2016.05.013]
29. [29] Berberian M., King G., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
30. [30] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process", Geological Magazine 148 (2011) 692-725. [DOI:10.1017/S001675681100046X]
31. [31] Hassanzadeh J., Wernicke B.P., "The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions", Tectonics 35, (2016). [DOI:10.1002/2015TC003926]
32. [32] Arvin M., Pan, Y., Dargahi S., Malekizadeh A., Babaei A., "Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction", Journal of Asian Earth Sciences 30 (2007) 474-489. [DOI:10.1016/j.jseaes.2007.01.001]
33. [33] Esna-Ashari A., Tiepolo M., Hassanzadeh J., "On the occurrence and implications of Jurassic primary continental boninite-like melts in the Zagros orogeny", Lithos 258-259 (2016), 37- 57. [DOI:10.1016/j.lithos.2016.04.017]
34. [34] Ahadnejad V., Valizadeh M.V., Deevsalar R., Rezaei-Kahkhaei M., "Age and geotectonic position of the Malayer granitoids: implication for plutonism in the Sanandaj-Sirjan Zone, W Iran", Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 261 (2011) 61-75. [DOI:10.1127/0077-7749/2011/0149]
35. [35] Esna-Ashari A., Tiepolo M., "Petrogenesis of gabbroic rocks from the Malayer plutonic complex (Sanandaj-Sirjan zone, west Iran)", Periodico di Mineralogia, 89 (2020) 91-104.
36. [36] Azizi H., Stern R.J., "Jurassic igneous rocks of the central Sanandaj-Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc", Terra Nova 31 (5) (2019) 415-423. [DOI:10.1111/ter.12404]
37. [37] Azizi H., Asahara Y., Minami M., Anma R., "Sequential magma injection with a wide range of mixing and mingling in Late Jurassic plutons, southern Ghorveh, western Iran", Journal of Asian Earth Sciences 200, (2020a)104469 https://doi.org/10.1016/j.jseaes.2020.104469 [DOI:10.1016/j. jseaes.2020.104469.]
38. [38] Tavakoli N., Shabanian N., Davoudian A.R., Azizi H., Neubauer F., Asahara Y., Bernroider M. Lee J.K., "A-type granite in the Boein-Miandasht Complex: Evidence for a Late Jurassic extensional regime in the Sanandaj-Sirjan Zone, western Iran", Journal of Asian earth sciences, 213(2021) 104771. [DOI:10.1016/j.jseaes.2021.104771]
39. [39] Malek-Mahmoudi F., Davoudian A.R., Shabanian, N., Azizi H., Asahara, Y., Neubauer F., Dong Y., "Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic implications for the Pan-African basement in Iran", Precambrian Research, 293(2017) 56-72. [DOI:10.1016/j.precamres.2017.03.003]
40. [40] Badr A., Davoudian A. R., Shabanian, N., Azizi H., Asahara, Y., Neubauer F., Dong, Y., Yamamoto, K., "A-and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism", Lithos, 300 (2018) 86-104. [DOI:10.1016/j.lithos.2017.12.008]
41. [41] Moradi A., Shabanian N., Davoudian A.R., Azizi H., Santos J.F., Asahara Y., "Zircon U-Pb and geochemistry of the north Shahrekord metamorphosed felsic rocks: implications for the Ediacaran-Cambrian tectonic setting of Iran", International Journal of Earth Sciences, (2022) 1-25. [DOI:10.1007/s00531-022-02225-x]
42. [42] Sarkarinejad K., Azizi A., "Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran", Journal of Structural Geology: 30(2008) 116-136. [DOI:10.1016/j.jsg.2007.10.001]
43. [43] Babaahmadi A., Mohajjel M., Eftekhari A., Davoudian A.R., "An investigation into the fault patterns in the Chadegan region, west Iran: evidence for dextral brittle transpressional tectonics in the Sanandaj-Sirjan Zone", Journal of Asian Earth Sciences 43 (1) (2012) 77-88. [DOI:10.1016/j.jseaes.2011.08.012]
44. [44] Ghasemi A., Haji Hosseini A., Hosseini M., "Geological Map of Chadegan (scale 1: 100,000)", Geological Survey of Iran, (2005).
45. [45] Davoudian A.R., "Mineral chemistry and P-T conditions of crystallization of the granitoid plutons in the Zayandeh-Rood river area, shear zone of north of Shahrekord with special reference to magmatic epidote", Iranian Journal of Crystallography and Mineralogy 8 (2010) 497-512 (in Persian with an English abstract).
46. [46] Riyahi F., Shabanian N., Davoudian A. R.,'' Age relationship of dolerite dykes associated with the metamorphic and the volcanic-sedimentary complexes, around Zayandeh-Roud river according to petrographic evidence (in Persian)", 12thSymposium of Iranian Society of Economic Geology, BU-Ali Sina University Hamedan-Iran (2020).
47. [47] - Davoudian, A.R., "The tectonometamorphic and magmatic evolution in the Shahrekord- Daran area (Sanandaj - Sirjan Zone, Iran)", PhD Thesis, University of Isfahan, Iran, (2005) 220.
48. [48] Hashemi M., Shabanian N., Davoudian A. R., Azizi H., ''Investigation of temperature variations and deformation stages with respect to microstructures and mineral paragenesis in paragneisses of northern Shahrekord (in Persian)", Journal of Geosciences, (2019) 165-174.
49. [49] Davoudian A. R., Bendokht M., Shabanian N., Azizi H., Asahara Y., Neubauer F., Genser J., "Geochronology and geochemistry of the Ediacaran orthogneisses from the north Shahrekord (Sadegh‐Abad), Sanandaj‐Sirjan Zone: Insights into magmatic evolution of the Iranian basement", Geological Journal, 57(7) (2022) 2788-2811. [DOI:10.1002/gj.4440]
50. [50] Riyahi, F., Shabanian, N., Davoudian A. R. (2018) "Geochemistry and tectonic setting of granite-gneisses from Abadchi, north of Shahrekord (in Persian)", Iranian Journal of crystallography and mineralogy year, 26 (1) :195-208. [DOI:10.29252/ijcm.26.1.195]
51. [51] Dachs E., "PET: petrological elementary tools for mathematica", Computers & Geosciences, 24(3) (1998) 219-235. [DOI:10.1016/S0098-3004(97)00141-6]
52. [52] Whitney Donna L., Bernard W. Evans., "Abbreviations for names of rock-forming minerals", American mineralogist 95.1(2010) 185-187. [DOI:10.2138/am.2010.3371]
53. [53] Frost M.T., Grey I.E., Harrowfield I.R., Mason K., "The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western Australia", Mineralogical Magazine 47(1983) 201-208. [DOI:10.1180/minmag.1983.047.343.10]
54. [54] Nair A.G., Babu D.S., Damodaran K.T., Shankar R., Prabhu C.N., "Weathering of ilmenite from Chavara deposit and its comparison with Manavalakurichi placer ilmenite, southwestern India", Journal of Asian Earth Sciences, 34(2) (2009) 115-122. [DOI:10.1016/j.jseaes.2008.03.005]
55. [55] Walshe J.L., "A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems", Economic Geology, 81(3) (1986) pp.681-703. [DOI:10.2113/gsecongeo.81.3.681]
56. [56] Wiewióra A., Z. Weiss., "Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group", Clay Minerals 25.1 (1990) 83-92. [DOI:10.1180/claymin.1990.025.1.09]
57. [57] Guggenheim S., Adams J.M., Bain D.C., Bergaya F., Brigatti M.F., Drits V.A., Formoso M.L., Galán E., Kogure, T. Stanjek H., "Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006", Clays and Clay Minerals, 54(6) (2006) 761-772. [DOI:10.1346/CCMN.2006.0540610]
58. [58] Foster M.D., "Interpretation of the composition of lithium micas", USGS Prof. Pap., 354(1960) 147. [DOI:10.3133/pp354E]
59. [59] Bourdelle F., "Low-Temperature chlorite geothermometry and related recent analytical advances: A review", Minerals, 11(2) (2021) 130. [DOI:10.3390/min11020130]
60. [60] Cathelineau M., Nieva, D., "A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system", Contributions to Mineralogy and Petrology, 91(3) (1985) 235-244. [DOI:10.1007/BF00413350]
61. [61] Kranidiotis, P., W. H. MacLean. "Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec", Economic geology 82, no. 7 (1987): 1898-1911. [DOI:10.2113/gsecongeo.82.7.1898]
62. [62] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay minerals, 23(4) (1988) 471-485. [DOI:10.1180/claymin.1988.023.4.13]
63. [63] Jowett E.C., "Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer", In Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada (1991) 27-29.
64. [64] Hillier S.T., Velde B., "Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites", Clay Minerals, 26(2) (1991) 149-168. [DOI:10.1180/claymin.1991.026.2.01]
65. [65] Zang W., Fyfe W.S., "Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil", Mineralium Deposita, 30(1) (1995) 30-38. [DOI:10.1007/BF00208874]
66. [66] Xie X., Byerly G.R., Ferrell Jr R.E., "IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry", Contributions to Mineralogy and Petrology, 126(3) (1997) 275-291. [DOI:10.1007/s004100050250]
67. [67] Weiss L.E., "A study of tectonic style: structural investigation of a marble quartzite complex in southern California", University of California Publications in Geological Science, 30(1954) 1-102.
68. [68] Rose G., "Ueber die im Kalkspath vorkommenden hohlen Canäle", Abh. kÖnigl. Akad. Wiss. Berlin 23(1868) 57-79.
69. [69] MÜgge O., "Beiträge zur Kenntnis der Strukturflächen des Kalkspathes", Neues Jb. Miner. 1 (1883) 32-54.
70. [70] Klassen-Neklyudova M. V., "Mechanical Twinning of Crystals", Consultants Bureau, New York, (1964). [DOI:10.1007/978-1-4684-1539-1]
71. [71] Wenk H.R., Barber D., Reeder R., "Microstructures in carbonates. In: Reeder, R. (Ed.), Carbonates: Mineralogy and Chemistry", Am. Miner. Soc., Washington DC (1983) 301-369. [DOI:10.1515/9781501508134-013]
72. [72] Jamison William R., John H. Spang. "Use of calcite twin lamellae to infer differential stress", Geological society of America bulletin 87.6 (1976): 868-872. https://doi.org/10.1130/0016-7606(1976)87<868:UOCTLT>2.0.CO;2 [DOI:10.1130/0016-7606(1976)872.0.CO;2]
73. [73] Mosar J., "Deformation interne dans les Prealpes medianes (Suisse)", Eclogae Geol Helv 82(1989)765-793.
74. [74] Ferrill D.A., "Critical re-evaluation of differential stress estimates for calcite twins in coarse-grained limestone", Tectonophysics 285, (1998) 77-86. [DOI:10.1016/S0040-1951(97)00190-X]
75. [75] Groshong Jr R.H., Teufel L.W., Gasteiger C., "Precision and accuracy of the calcite strain-gauge technique", Geol Soc Am Bull95 (1984b) 357-363. https://doi.org/10.1130/0016-7606(1984)95<357:PAAOTC>2.0.CO;2 [DOI:10.1130/0016-7606(1984)952.0.CO;2]
76. [76] Rowe K.J., Rutter E.H., "Paleostress estimation using calcite twinning: experimental calibration and application to nature", Journal of Structural Geology 12(1990)1-18. [DOI:10.1016/0191-8141(90)90044-Y]
77. [77] Evans M.A., Dunne W.M., "Strain factorization and partitioning in the North Mountain thrust sheet, central Appalachians, USA", Journal of structural geology 13 (1991) 21-36. [DOI:10.1016/0191-8141(91)90098-4]
78. [78] Vernon R.H., "Optical microstructure of partly recrystallized calcite in some naturally deformed marbles", Tectonophysics 78(1981)601-612. [DOI:10.1016/0040-1951(81)90031-7]
79. [79] Rutter E.H., Neumann D.H.K., "Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas", Journal Geophys Res 100(1995)15697-15715. [DOI:10.1029/94JB03388]
80. [80] Kennedy L.A., White J.C., "Low-temperature recrystallization in calcite: mechanisms and consequences", Geology 29(2001)1027-1030. https://doi.org/10.1130/0091-7613(2001)029<1027:LTRICM>2.0.CO;2 [DOI:10.1130/0091-7613(2001)0292.0.CO;2]
81. [81] Weber J.C., Ferrill D.A., Roden-Tice M.K., "Calcite and quartz microstructural geothermometry of low-grade metasedimentary rocks, Northern Range, Trinidad", Journal of Structural Geology 23(2001)93-112. [DOI:10.1016/S0191-8141(00)00066-3]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb