Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 45-60 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abedini A. Mineralogy and geochemistry of the Tatros kaolin deposit, southwest of Danesfahan, Gazvin Province, Iran. www.ijcm.ir 2024; 32 (1) :45-60
URL: http://ijcm.ir/article-1-1841-en.html
Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
Abstract:   (1776 Views)
The Tatros kaolin deposit (southwest of Dansfahan, Qazvin Province) is a product of the alteration of rhyodacitic volcanic rocks of the Middle Eocene age. Mineralogical studies show that kaolinite and quartz are the main mineralogical phases and illite, rutile, pyrophyllite, dickite, alunite, and chlorite are accessory mineralogical phases of this deposit. The decrease in the chemical index of alteration (CIA) and the increase in the ratio of (SiO2+Fe2O3+MgO+CaO+Na2O+K2O)/(Al2O3+TiO2) from the center to the outside in the studied profile indicates the existance of alteration and hydrothermal zoning in this  deposit. The distribution pattern of rare earth elements (REE) normalized to chondrite indicates the strong diferentiation and enrichment of light rare earth elements (LREE: La-Eu) related to heavy rare earth elements (HREE: Gd-Lu) and the occurrence of strong negative Eu and Ce anomalies in the studied kaolin samples. Calculations of mass changes assuming Ti as an immobile monitor element show that kaolinitization of rhyodacite rocks is accompanied by enrichment of elements of Al, Sr, Zr, Hf, Ta, Nb, U, Th, Y, La, and Pr, leaching-fixation of Sm, Nd, and HREE, and depletion of Si, Fe, Mg, Mn, Ca, Na, K, P, Rb, Cs, Ba, Pb, V, Cr, Zn, Eu and Ce. The obtained results reveal that the behavior of elements during the development of kaolinitization processes is controlled by factors such as changes in pH and temperature of fluids responsible for alteration, residual concentrations, surface absorption, scavenging by metalic oxides, and the presence of mineralogical phases resistant to alteration. The occurrence of negative Eu anomaly during kaolinitization indicates the destruction of plagioclase by high-temperature hydrothermal fluids. The presence of diaspore, dickite, and pyrophyllite, the enrichment of LREE related to HREE, the differentiation of HREE from each other, and the occurrence of strong negative Ce anomaly in the studied samples clearly suggest the role of hypogene processes in the development and evolution of the Tatros kaolin deposit. Other evidence such as strong positive correlations (La/Yb)N-LOI and P2O5-LOI along with the values of some geochemical parameters such as Ce+La+Y, Nb+Cr, Rb+Sr, and Y/Ho support this idea. 
Full-Text [PDF 681 kb]   (339 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Baioumy H., Farahat, M., Arifin M. H., Anuar M. N. A. B., Al-Kahtany K., "Hypogene kaolin deposits from felsic intrusive rocks (Peninsular Malaysia) with special reference to rare earth elements and stable isotopes geochemistry", Geosciences Journal 25 (2021) 863-876. [DOI:10.1007/s12303-021-0003-9]
2. [2] Galán E., Aparicio P., Fernández-Caliani J. C., Miras A., Márquez M. G., Fallick A. E., Clauer N., "New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain)", Applied Clay Science 131 (2016) 14-26. [DOI:10.1016/j.clay.2015.11.015]
3. [3] Dill H. G., Bosse R., Henning K. H., Fricke A., Ahrendt H., "Mineralogical and
4. chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt
5. the Central Andes of northwestern Peru", Mineralium Deposita 32 (1997) 149-163. [DOI:10.1007/s001260050081]
6. [4] Karakaya M. C., Karakaya N., Temel A., Yavuz F., "Mineralogical and geochemical properties and genesis of kaolin and alunite deposits, SE of Aksaray (Central Turkey)", Applied Geochemistry 124 (2021) 104830. [DOI:10.1016/j.apgeochem.2020.104830]
7. [5] Kadir S., Ateş H., Erkoyun H., Külah T., Esenli F., "Genesis of alunite-bearing kaolin deposit in Mudamköy member of the Miocene Göbel Formation, Mustafakemalpaşa (Bursa), Turkey", Applied Caly Science 221 (2022) 106407. [DOI:10.1016/j.clay.2022.106407]
8. [6] Pracejus B., Abbasi I. A., Al-Khirbash S., Al-Aamri M., "Nature, genesis and industrial properties of the kaolin from Masirah Island, Oman", Clay Minerals 52 (2017) 275-297. [DOI:10.1180/claymin.2017.052.3.01]
9. [7] Ercan H. U., Ece U. I., Schroeder P. A., Karacik Z., "Differentiating styles of alteration within kaolin-alunite hydrothermal deposits of Çanakkale, NW Turkey", Clays and Clay Minerals 64 (2016) 245-274. [DOI:10.1346/CCMN.2016.0640305]
10. [8] Kadir S., Kulah T., Eran M., Önagil N., Gurel A., "Minerlogical and geochemical characteristics and genesis of the Gözelyurt alunite-bearing kaolinite deposit within the late Miocene Gördeles ignimbrite, central Anatolia, Turkey ", Clays and Clay Minerals 62 (2014) 477-499. [DOI:10.1346/CCMN.2014.0620603]
11. [9] Höhn S., Frimmel H. E., Pašava J., "The rare earth element potential of kaolin deposits in the Bohemian Massif (Czech Republic, Austria)", Mineralium Deposita 49 (2014) 967-986. [DOI:10.1007/s00126-014-0542-3]
12. [10] Campos V. M. J. S., Bertolino L. C., Nascimento L. C. S., Leite J. Y. P., Brandão V. S., Alves O. C., Junior J. T., "Mineralogy and technological characterization of two kaolin deposits from the Borborema Pegmatite Province, northeastern Brazil", Clay Minerals (2019) 54 (2019) 283-291. [DOI:10.1180/clm.2019.41]
13. [11] Sayit I. Ö., Türkmenoğlu A. G., Demirci C. S. A. S., "Hydrothermal alteration products in the vicinity of the Ahırözü kaolin deposits, Mihalıççık-Eskişehir,Turkey", Clay Minerals 53 (2018) 289-303. [DOI:10.1180/clm.2018.19]
14. [12] Gilg H. A., Hülmeyer S., Miller H., Sheppard S. M. F., "Supergene origin of the
15. Lastarria kaolin deposit, south-central Chile, and paleoclimatic implications", Clays and
16. Clay Minerals 47 (1999) 201-211. [DOI:10.1346/CCMN.1999.0470210]
17. [13] Çiflikli M., "Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: An example from Miocene ignimbrite units in Avanos, Central Turkey", Arabian Journal of Geosciences 13 (2020) 1044. [DOI:10.1007/s12517-020-06021-2]
18. [14] Kadir S., Erkoyun H., "Genesis of the hydrothermal Karaçaýir kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre Basin, western Turkey", Turkish Journal of Earth Sciences 22 (2013) 444-468. [DOI:10.3906/yer-1112-2]
19. [15] Kadir S., Akbulut A., "Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey", Clay Minerals 44 (2011) 89-112. [DOI:10.1180/claymin.2009.044.1.89]
20. [16] Arslan M., Kadir S., Abdioglu E., Kolayli H., "Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey", Clay Minerals 41 (2006) 597-617. [DOI:10.1180/0009855064120208]
21. [17] Nogol Sadat A., Hushmand Zadeh A., "Saveh quadrangle geological map, scale 1:250,000",
22. Geological Survey of Iran (1984).
23. [18] Eghlimi B., "Danesfahan geological map, scale 1:100,000", Geological Survey of Iran (2000).
24. [19] Pirooz H., "Report of final exploration stage in the Atash-Anbar polymetallic deposit", Industry
25. and mines ministry of the Qazvin province (2015) 1-55.
26. [20] Alaei-Moghtader N., "Mineralogy, fluid inclusions and geochemistry of stable isotopes in
27. Atash-Anbar polymetallic deposit, SW Danesfahan, Qazvin Province", MSc thesis. Bu-Ali Sina
28. University, Hamedan (2020) 1-181.
29. [21] Tale Fazel E., Alaei-Moghtader N., Oroji A., "Temperature condition, source of bismuth and mechanism of Au-scavenging by Bi phases in the Atash-Anbar gold deposit (south Qazvin)", Iranian Journal of Crystallography and Mineralogy 29 (2021) 587-596. [DOI:10.52547/ijcm.29.3.587]
30. [22] Nabavi M. H., "An introduction to the geology of Iran", Geological Survey of Iran Publication (1976) 1-105.
31. [23] Marfil S. A., Maiza P. J., Montecchiari N., "Alteration zonation in the Loma Blanca kaolin deposit, Los Menucos, Province of Rio Negro, Argentina", Clay Minerals 45 (2010) 157-169. [DOI:10.1180/claymin.2010.045.2.157]
32. [24] Marfil S. A., Maiza P. J., Montecchiari N., Corbella M., "Origin of kaolin deposits in the Los Menucos, Rio Negro Province, Argentina", Clay Minerals 40 (2005) 283-293. [DOI:10.1180/0009855054030172]
33. [25] Murray H., Janssen J., "Oxygen isotopes-indicators of kaolin genesis?" Proceeding of the 27th International Geological Congress 15 (1984) 287-303.
34. [26] Jepson W. B., Browse J. B., "The composition of kaolinite-an electron microbe study", Clays and Clay Minerals 23 (1975) 310-317. [DOI:10.1346/CCMN.1975.0230407]
35. [27] Grecco L., Marfill S., Maiza, P. J., "Mineralogy and geochemistry of hydrothermal kaolins from the Adelita mine, Patagonia (Argentina); relation to other mineralization in the area", Clay Minerals 47 (2012) 131-146. [DOI:10.1180/claymin.2012.047.1.131]
36. [28] Nesbitt H. W., Young G. M., "Early Proterozoic climates and past plate motions inferred from major element chemistry of lutites", Nature 299 (1982) 715-717. [DOI:10.1038/299715a0]
37. [29] Kadir S., Erman H., Erkoyun H., "Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kutahya (western Anatolia), Turkey", Clays and Clay Minerals 59 (2011) 250-276. [DOI:10.1346/CCMN.2011.0590304]
38. [30] Abedini A., "Mineralogy and geochemistry of the Hizeh-Jan kaolin deposit, northwest of Varzaghan, East-Azarbaidjan province, NW Iran", Iranian Journal of Crystallography and Mineralogy 24 (2017) 647-660.
39. [31] Nesbitt H. W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206-210. [DOI:10.1038/279206a0]
40. [32] Karakaya N., "REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence", Journal of Geochemical Exploration 101 (2009) 185-208. [DOI:10.1016/j.gexplo.2008.07.001]
41. [33] Winchester J. A., Floyd, P. S., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 245-252. [DOI:10.1016/0009-2541(77)90057-2]
42. [34] Erkoyun H., Kadir S., "Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaclar area, Uşak, western Turkey", Clay Minerals 46 (2011) 421-448. [DOI:10.1180/claymin.2011.046.3.421]
43. [35] Keller W. D., "Scan electron micrographs of the kaolinization process including examples from the Bohmian Massif", Schriftenreihe fuer Geologische Wissenschaften 11 (197) 89-108.
44. [36] Siddiqui A. A., Ahmed Z., "Geochemistry of the kaolin deposits of Swat (Pakistan)", Chemie der Erde 68 (2008) 207-219. [DOI:10.1016/j.chemer.2005.11.001]
45. [37] Ece O. A., Schroeder P. A., Smilley A., Wampler A., "Acid sulfate alteration of volcanic rocks and genesis of halloysite and alunite deposits in the Biga Peninsula, NW Turkey", Clay Minerals 43 (2008) 281-315. [DOI:10.1180/claymin.2008.043.2.10]
46. [38] Patino L. C., Velbel M. A., Price J. R., Wade, J. A., "Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala", Chemical Geology 202 (2003) 343-364. [DOI:10.1016/j.chemgeo.2003.01.002]
47. [39] Marques J. J., Schulze D. G., Curi N., Mertzman S. A., "Trace element geochemistry in Brazilian Cerrado soils", Geoderma 121 (2004) 31-43. [DOI:10.1016/j.geoderma.2003.10.003]
48. [40] Lackschewitz K. S., Singer A., Botz R., Garbe-Schِnberg D., Stoffers P., "Mineralogy and geochemistry of clay minerals near a hydrothermal site in the Escanaba trough, Gorda Ridge, northeast Pacific Ocean", In: Zierenberg R. A., Fouquet Y., Miller D. J., Normark W.R., (eds), Proceeding of the Ocean Drilling Program. Scietific Results, 169 (2000) 1-24. [DOI:10.2973/odp.proc.sr.169.116.2000]
49. [41] Cravero F., Dominguez E., Iglesias C., "Genesisi and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina)", Applied Clay Science 18 (2001) 157-172. [DOI:10.1016/S0169-1317(00)00021-1]
50. [42] Taylor Y, McLennan S. M., "The continental crust: Its composition and evolution", 1st ed. Oxford, UK: Blackwell (1985).
51. [43] Bau M., Dulski P., "Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near vent mixing and for the Y/Ho ratio of Proterozoic seawater", Chemical Geology 155 (1999) 77-90. [DOI:10.1016/S0009-2541(98)00142-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb