Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 8-8 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoomi R, Rahimsouri Y, Jamali H, Abedini A. Investigation of ore mineralization and fluid inclusions of the Kamar-Gov district, south Hashtjin, Ardabil Province, NW Iran. www.ijcm.ir 2022; 30 (4) :8-8
URL: http://ijcm.ir/article-1-1815-en.html
Abstract:   (711 Views)
The Kamar-Gov study district is located south of Hashtjin city in the Ardabil Province (NW Iran). The geological units in this district include lavas (with composition of basaltic trachy-andesite to rhyolite), sub-volcanic rocks (as dyke and stock with composition of porphyritic trachy-andesite and trachyte) and crystal, vitric (lithic) tuffs (intermediate and felsic composition). Extensive zones of silicic, sericitic-argillic, advanced-argillic, and chloritic alteration have formed in these rocks. Pyrite is the prevalent metal mineral in the study area and approximately extended in all rock units. Besides pyrite, chalcopyrite, chalcocite, galena, sphalerite, hematite, and magnetite are also present. Covellite, digenite, and goethite are supergene minerals. Ore minerals have formed in crystal, vitric tuff and rhyolite as veinlet, dissemination, strata-bound dissemination, and inside silicic veins/veinlets. Three types of primary fluid inclusions are present within quartz minerals of silicic veins/veinlets and accompanied by disseminated ore minerals, including liquid-rich two phases, vapor-rich two-phases, and salt-saturated three-phase fluid inclusions (liquid, vapor, and halite + sylvite). Micro-thermometric analysis of these fluid inclusions shows the salinity of 1.05-14 wt% NaCl equivalents with the highest frequency of homogenization temperatures between 200 and 300 °C. The ore formation type is similar to intermediate sulfidation epithermal deposits, based on features like the vein-veinlet shape of ore mineralization, colloform and crustiform textures, base metal mineralization, the mineral assemblage of kaolinite – muscovite – pyrite ± sphalerite, intermediate salinity and temperature of the fluid, and probable effect of the boiling process.
 
Full-Text [PDF 6323 kb]   (246 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Motlagh S.H.M., Ghaderi M., "The Chargar Au-Cu deposit: an example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran", Neues Jahrbuch für Mineralogie-Abhandlungen 196 (2019) 43-66. [DOI:10.1127/njma/2019/0158]
2. [2] Aghajani S., Emami M.H., Lotfi M., Gholizadeh K., Ghasemi Siani M., "Evidences of low-sulfidation Epithermal type mineralization in the Nikuyeh area, Qazvin-Iran", SEG Conference (Building Exploration Capability for the 21st Century) (2014).
3. [3] Kouhestani H., Azimzadeh A.M., Mokhtari M.A.A., Ebrahimi M., "Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran", Neues Jahrbuch für Mineralogie-Abhandlungen (2017) 139-155. [DOI:10.1127/njma/2017/0036]
4. [4] Mehrabi B., Siani M.G., Goldfarb R., Azizi H., Ganerod M., Marsh E.E., "Mineral assemblages, fluid evolution, and genesis of polymetallic epithermal veins, Glojeh district, NW Iran", Ore Geology Reviews 78 (2016) 41-57. [DOI:10.1016/j.oregeorev.2016.03.016]
5. [5] Zamanian H., Rahmani Sh., Jan Nesari M.R., Zarei Sahamiyeh R., Borna B., "Ore-genests study of The Cu-Au vein-type deposit in The Taron- Granitoid (North Zanjan) based on mineralogical, geochemical and fluid inclusion evidences (in Persian) ", Iranian Journal of Geosciences 25 (2016) 255-284.
6. [6] Mikaeili K., Hosseinzadeh M.R., Moayyed M., Maghfouri S., "The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag) Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization", Minerals 8 (2018) 148. [DOI:10.3390/min8040148]
7. [7] Yasami N., Ghaderi M., Madanipour S., Taghilou B., "Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran", Ore Geology Reviews 86 (2017) 212-224. [DOI:10.1016/j.oregeorev.2017.01.028]
8. [8] Hosseinzadeh M. R., Maghfouri S., Moayyed M., Rahmani A., " Khalifehlu deposit: high-sulfidation epithermal Cu-Au mineralization in the Tarom magmatic zone, North Khoramdareh (in Persian) ", Iranian Journal of Geosciences 25 (2016) 179-194.
9. [9] Maghfouri S., Hosseinzadeh M.R., Moayyed M., Movahednia M., Choulet F., "Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto-type deposit, northern Zanjan, Iran", Ore Geology Reviews 81 (2017) 10-22. [DOI:10.1016/j.oregeorev.2016.10.025]
10. [10] Nabatian G., Ghaderi M., "Oxygen isotope and fluid inclusion study of the Sorkhe-Dizaj iron oxide-apatite deposit, NW Iran", International Geology Review 55 (2013) 397-410. [DOI:10.1080/00206814.2012.713547]
11. [11] Moayyed M., "Petrological studies of volcanic-plutonic tertiary strip of West Alborz-Azerbaijan, with a special focus on Hashtjin region (in Persian)", Ph.D thesis (2001) 329 p.
12. [12] Pars Pey Azma Company, "Mineral exploration report of Ghezel Ozan anomalies in Ardabil province", (2016) 1057p.
13. [13] Haj Alilou B., "Tertiary metallurgy in West Alborz-Azerbaijan (Middle-Hashtrood) with a special view on Hashtjin region (in Persian)", PhD thesis, Shahid Beheshti University, Tehran, Iran (1999) 275 p.
14. [14] Masoomi R., Rahimsouri Y., Jamali H., Abedini A., "Mineralogy and geochemistry of major and trace elements in argillic alteration zone of the Kamar district, NW Iran (in Persian)", Iranian Journal of Geosciences 31 (2021) 123-136.
15. [15] Steele-MacInnis M., Bodnar R.J., Naden J., "Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data", Geochimica et Cosmochimica Acta 75 (2011) 21-40. [DOI:10.1016/j.gca.2010.10.002]
16. [16] Roedder E., "fluid inclusions", Reviews in mineralogy 12 (1984). [DOI:10.1515/9781501508271]
17. [17] Shepherd T. J., Rankin A. H., M Alderton D. H., "A practical guide to fluid inclusion studies", New York, Blackie (1985) 239 p.
18. [18] Nabavi M. H., "An Introduction to the Geology of Iran", Publications of the Geological Survey of Iran (1976) 109 p.
19. [19] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
20. [20] Mcphie J., Doyle M., Allen R., "Volcanic textures, a guide the interpretation of textures in volcanic rocks", University of Tasmania (1993) 191p.
21. [21] Voudouris P., "Hydrothermal corundum, topaz, diaspore and alunite supergroup minerals in the advanced argillic alteration lithocap of the Kassiteres-Sapes porphyry-epithermal system, western Thrace, Greece", Neues Jahrbuch für Mineralogie 191 (2014) 117-136. [DOI:10.1127/0077-7757/2014/0251]
22. [22] Simmons S.F., White N.C., John D.A., "Geological characteristics of epithermal precious and base metal deposits", Economic Geology 100 (2005) 485-522. [DOI:10.2113/gsecongeo.100.5.1052]
23. [23] Watanabe Y., Hedenquist J.W., "Mineralogical and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile", Economic Geology 96 (2001) 1775-1797. [DOI:10.2113/gsecongeo.96.8.1775]
24. [24] Barnes H.L., "Geochemistry of hydrothermal ore deposits", John Wiley and Sons (1997) 992p.
25. [25] Mavrogenes J.A., Bodnar R.J., "Hydrogen movement into and out of fluid inclusions in quartz: Experimental evidence and geologic implications", Geochimica et Cosmochimica Acta 58 (1994) 141-148. [DOI:10.1016/0016-7037(94)90452-9]
26. [26] Bodnar R.J., "Revised equation and table for determining the freezing point depression of H2O-NaCl solutions", Geochemica et Cosmochimica acta 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
27. [27] Sterner S.M., Hall D.L., Bodnar R.J., "Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions", Geochimica et Cosmochimica Acta 52 (1988) 989-1005. [DOI:10.1016/0016-7037(88)90254-2]
28. [28] Lecumberri-Sanchez P., Steele-MacInnis M., Bodnar R.J., "A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance", Geochimica et Cosmochimica Acta 92 (2012) 14-22. [DOI:10.1016/j.gca.2012.05.044]
29. [29] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
30. [30] Salehi Tinooni M., Abedini A., Alipour S., "Investigation of mineralization, alteration, and fluid inclusions of the Takht-e-Gonbad copper deposit (northeast of Sirjan, SE Iran)", Iranian Journal of Crystallography and Mineralogy 29 (2021) 35-48. [DOI:10.52547/ijcm.29.1.35]
31. [31] Salehi Tinooni M., Abedini A., Calagari A.A., "Type of mineralization and studies of fluid inclusions of the Bolboli2 copper ore deposit, northeast of Sirjan, SE Iran", Iranian Journal of Crystallography and Mineralogy 28 (2020) 329-340. [DOI:10.29252/ijcm.28.2.329]
32. [32] Sillitoe R.H., Hedenquist J.W., "Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits", Society of Economic Geologist Spaecial Publication 10 (2003) 315-343.
33. [33] Wang L., Qin K.Z., Song G.X., Li G.M., "A review of intermediate sulfidation epithermal deposits and subclassification", Ore Geology Reviews 107 (2019) 434-456. [DOI:10.1016/j.oregeorev.2019.02.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb