Volume 31, Issue 3 (10-2023)                   www.ijcm.ir 2023, 31(3): 537-552 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

barati lak A, Rahimsouri Y, Bonyadi Z. Mineralogy, geochemistry, and fluid inclusion of the Balestan Iron deposit, Southeast of Urmia, NW Iran. www.ijcm.ir 2023; 31 (3) :537-552
URL: http://ijcm.ir/article-1-1800-en.html
1- Department of Geology, Faculty of Science, Urmia University, Urmia, Iran
2- Department of Geology, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Abstract:   (1211 Views)
The Balestan iron deposit is located about 55 km southeast of Urmia city. The main host rock is the quartz sericite schist unit of the Early Precambrian age. Major mineralization occurred along the schistocytes of the host rock. However, open space filling structure is also abundantly observed in the fault zones. Based on field evidence and microscopic studies, the dominant iron mineralization is in the form of magnetite, which is observed along with pyrite and chalcopyrite. Geochemical investigations revealed that the distribution patterns of trace elements and major oxides are very similar to other hydrothermal iron deposits. The microthermometric studies of fluid inclusions shows an average homogenization temperature and salinity of about 276°C and 7.3 wt% NaCl equivalent, respectively.The variation trends in salinity and Th of fluid inclusions can be explained by a cooling and pressurization of ore-bearing fluids. Also, these data show that the Balestan iron ore deposit is located within the field of mesothermal ore deposits.
Full-Text [PDF 4313 kb]   (415 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Aghanabati S.A., "Geology of Iran", Geological Survey of Iran. 606 p (2004).
2. [2] Alavi Naeini M., Shahrabi M., Saeedi A., "Geological Quadrangle Map of Urmia scale (1:250,000)" , Geological Survey of Iran, Tehran (1985).
3. [3] Whitney, D.L. and Evans, B.W. "Abbreviations for Names of Rock-Forming Minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
4. [4] Tavakoli P., Rostami A., Rasti S., "Genesis of the Tang Zagh iron deposit by using mineralogical and geochemical data, Hormozgan province", Iranian Journal of Crystallography and Mineralogy 16 (2022) 129-140. [DOI:10.52547/ijcm.30.1.129]
5. [5] Rajabzadeh M.A., Rasti S., " Mineralization study on Dehbid magnetite deposit, Fars; usingmineralogical and geochemical data", Journal of Economic Geology 3 (2012) 217-230.
6. [6] Russell, M.J., Solomon, M. and Walshe, J.L., "The genesis of sediment-hosted, exhalative zinc+ lead deposits", Mineralium Deposita, 16 (1) (1981) 113-127. [DOI:10.1007/BF00206458]
7. [7] Knipping, Jaayke L., Laura D. Bilenker, Adam C. Simon, Martin Reich, Fernando Barra, Artur P. Deditius, Markus Wӓlle, Christoph A. Heinrich, François Holtz, and Rodrigo Munizaga. "Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes", Geochimica et Cosmochimica Acta, 171 (2015) 15-38. [DOI:10.1016/j.gca.2015.08.010]
8. [8] Barker, D.S., "Crystallization and alteration of quartz monzonite, Iron Springs mining district, Utah; relation to associated iron deposits", Economic Geology, 90 (8) (1995) 2197-2217. [DOI:10.2113/gsecongeo.90.8.2197]
9. [9] Marschik, R. and Fontboté, L., "The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile", Economic Geology, 96(8) (2001) 1799-1826. [DOI:10.2113/96.8.1799]
10. [10] Tallarico, Fernando HB, Bernardino R. Figueiredo, David I. Groves, Natalie Kositcin, Neal J. McNaughton, Ian R. Fletcher, and José L. Rego. "Geology and SHRIMP U-Pb geochronology of the Igarapé Bahia deposit, Carajás copper-gold belt, Brazil: An Archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization." Economic Geology 100, no. 1 (2005): 7-28. [DOI:10.2113/100.1.0007]
11. [11] Rajabzadeh M.A., Rasti S., "Investigation on mineralogy, geochemistry and fluid inclusions of the Goushti hydrothermal magnetite deposit, Fars Province, SW Iran: a comparison with IOCGs", Ore Geology Reviews (2017) 82 93-107. [DOI:10.1016/j.oregeorev.2016.11.025]
12. [12] Bajwah, Z.U., Seccombe, P.K. and Offler, R., "Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia", Mineralium Deposita, 22 (4) (1987) 292-300. [DOI:10.1007/BF00204522]
13. [13] Henderson, P., "Rare earth element geochemistry", Elsevier, (1989) 510.
14. [14] Taylor, R.P. and Fryer, B.J., "Rare earth element lithogeochemistry of granitoid mineral deposits", CIM (Can. Inst. Min. Metall.) Bull, 76 (860) (1983) 74-84.
15. [15] Taylor Y, McLennan S. M., "The continental crust: Its composition and evolution", 1st ed. Oxford, UK: Blackwell (1985).
16. [16] Castor, S.B. and Hedrick, J.B., "Rare earth elements. Industrial minerals and rocks", (2006) 769-792.
17. [17] Patino L. C., Velbel M. A., Price J. R., Wade, J. A., "Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala", Chemical Geology 202 (2003) 343-364. [DOI:10.1016/j.chemgeo.2003.01.002]
18. [18] Williams, P. J., Barton, M. D., Johnson, D. A., Fontbote , L., De Haller, A., Mark, G., Oliver, N. H. S., Marschik , R., "Iron oxide - copper - gold deposits: geology, space-time distribution, and possible modes of origin". In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R .J., Richards, J. P, (eds) Economic Geology 100 Anniversary Volume, Littleton, C. O., Society of economic Geologists, (2005) 371-40. [DOI:10.5382/AV100.13]
19. [19] Arslan M., Kadir S., Abdioglu E., Kolayli H., "Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey", Clay Minerals 41 (2006) 597-617. [DOI:10.1180/0009855064120208]
20. [20] Shepherd T. J., Rankin A. H., Alderton, D. H., "A practical guide to fluid inclusion studies", Glasgow, Blackie and Son (1985) 239.
21. [21] Simmons, S.F., Mauk, J.L. and Simpson, M.P., October. "The mineral products of boiling in the Golden Cross epithermal deposit" In New Zealand Minerals & Mining Conference Proceeding (2000) 29-31.
22. [22] Chou, I.M., "Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445° C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000° C and 1500 bars", Geochimica et Cosmochimica Acta, 51(7) (1987) 1965-1975. [DOI:10.1016/0016-7037(87)90185-2]
23. [23] Bodnar, R.J., "A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids" Economic Geology, 78(3) (1983) 535-542. [DOI:10.2113/gsecongeo.78.3.535]
24. [24] Wilkinson, J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos, 55 (1-4) (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
25. [25] Foster, R.P., "Gold metallogeny and exploration", Springer, London, (1996) 431.
26. [26] Robb, R., "Introduction to ore-forming processes", Book, Blackwell Science Ltd a Blackwell Publishing company, (2005).
27. [27] Rodder, E., "Fluid inclusions in minerals: Reviews in Mineralogy" (1984).
28. [28] Goldforb, R.J., Baker, T., Dubé, B., Groves, D.I., Hart, C.J. and Gosselin, P., "Distribution, character, and genesis of gold deposits in metamorphic terran" (2005). [DOI:10.5382/AV100.14]
29. [29] Scott, A.M. and Watanabe, Y., "Extreme boiling" model for variable salinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan", Mineralium Deposita, 33 (6) (1998) 568-578. [DOI:10.1007/s001260050173]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb