1. [1] Goldman A., Modern ferrite technology: Springer Science & Business Media, (2006).
2. [2] Salje E. K., Hayward S. A., Lee W. T., "Ferroelastic phase transitions: structure and microstructure", Acta Crystallographica Section A: Foundations of Crystallography, 61, 3-18, (2005). [
DOI:10.1107/S0108767304020318]
3. [3] Ponraj C., Vinitha G., Daniel J., "A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes", Environmental Nanotechnology, Monitoring & Management, 7, 110-120, (2017). [
DOI:10.1016/j.enmm.2017.02.001]
4. [4] Niu F., Gao T., Zhang N., Chen Z., Huang Q., Qin L., et al., "Hydrothermal synthesis of BiFeO3 nanoparticles for visible light photocatalytic applications," Journal of nanoscience and nanotechnology, 15, 9693-9698, (2015). [
DOI:10.1166/jnn.2015.10682]
5. [5] Subramoney S., "Science of fullerenes and carbon nanotubes. By MS Dresselhaus", G. Dresselhaus, and PC Eklund, XVIII, 965 pp., Academic press, San Diego, CA 1996, hardcover, ISBN 012‐221820‐5," Advanced Materials, 9, 1193-1193, (1997). [
DOI:10.1002/adma.19970091518]
6. [6] Li J., Xu J., Xie Z., Gao X., Zhou J., Xiong J., et al., "Diatomite‐Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application", Advanced Materials, 30. 1800548, (2018). [
DOI:10.1002/adma.201800548]
7. [7] Chen F., Li S., Chen Q., Zheng X., Liu X., Fang S., "3D graphene aerogels-supported Ag and Ag@ Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water", Materials Research Bulletin, 105, 334-341, (2018). [
DOI:10.1016/j.materresbull.2018.05.013]
8. [8] Hao C., Xiang J., Hou H., Lv W., Lv W., Hu W., et al., "Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer", Materials Research Bulletin, 50, 369-373, (2014). [
DOI:10.1016/j.materresbull.2013.11.039]
9. [9] Chen C., Cheng J., Yu J., Che L., Meng Z., "Hydrothermal synthesis of perovskite bismuth ferrite crystallites", Journal of Crystal Growth, 291, 135-139, (2006). [
DOI:10.1016/j.jcrysgro.2006.02.048]
10. [10] Park S., Ruoff R. S., "Chemical methods for the production of graphenes", Nature nanotechnology, 4. 217, (2009). [
DOI:10.1038/nnano.2009.58]
11. [11] Li J., Wang Y., Ling H., Qiu Y., Lou J., Hou X., et al., "Significant enhancement of the visible light photocatalytic properties in 3D BiFeO3/graphene composites", Nanomaterials, 9. 65, (2019). [
DOI:10.3390/nano9010065]
12. [12] Kusumawati R., "Synthesis and Characterization of Fe3O4@ rGO Composite with Wet-Mixing (ex-situ) Process," in Journal of Physics Conference Series, 012048,) 2019). [
DOI:10.1088/1742-6596/1171/1/012048]
13. [13] Bera M., Gupta P., Maji P. K., "Facile one-pot synthesis ofgraphene oxide by sonication assisted mechanochemical approach and its surface chemistry",Journal of nanoscience and nanotechnology, 18, 902-912, (2018). [
DOI:10.1166/jnn.2018.14306]
14. [14] Timoumi A., "Reduction Band Gap Energy of TiO2 Assembled with Graphene Oxide Nanosheets", Graphene, 7, 31-38 (2018). [
DOI:10.4236/graphene.2018.74004]