Volume 30, Issue 2 (5-2022)                   www.ijcm.ir 2022, 30(2): 19-19 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fathollahpor, Abedini, Tajeddin. Investigation of mineralization and fluid inclusions of the Lapeh-Zanak copper deposit, Central Alborz zone, Iran. www.ijcm.ir 2022; 30 (2) :19-19
URL: http://ijcm.ir/article-1-1746-en.html
Abstract:   (856 Views)
The Lapeh-Zanak copper deposit is located about 15 km east of Tehran, in the southern part of the Central Alborz Zone. The rock units exposed in this area include a sequence of volcanic and pyroclastic rocks (basalt, andesite, trachy-andesite and dacitic and vitric tuff) belonging to the Fajan Formation with the Paleocene-Lower Eocene age, which are cut by subvolcanic igneous masses with a composition of micromonzodiorite-gabbro. Copper mineralization in the Lepeh-Zanak deposit occurred in the form of quartz veins-veinlets (± carbonate and barite) along with silicic, argillic, carbonate and propylitic alterations in andesite-trachyandesite rocks. Vein-veinlet and breccia structures and textures are very common in the copper- bearing ore in this deposit. The mineralogy of ore is simple and includes primary minerals of pyrite, chalcopyrite, magnetite, hematite and rutile, which are accompanied by secondary minerals such as digenite, covellite, malachite, and iron hydroxide compounds. The fluid inclusion studies of quartz and barite minerals in copper-bearing ores and barite veins indicate that majority of primary inclusions are two-phase liquid-rich (L+V). Microthermometric studies show that the homogenization temperatures in quartz and barite vary in the range of 100 to 198 and 110 to 207 °C, respectively. Salinity in the primary inclusions of these two minerals shows the range from 0.88 to 8.55 and 4.96 to 7.86% wt% NaCl eq., respectively. Salinity in quartz and barite minerals is in the range of 0.88 to 8.55 and 4.96 to 7.86 wt% NaCl eq., respectively. Based on the results of microthermometric of fluid inclusions, cooling and dilution of hydrothermal fluids with atmospheric waters are the main reasons for the deposition of minerals in the studied deposit. The combination of the results obtained from geological, mineralogical, alteration and fluid inclusions reveals that the Lapeh-Zanak copper deposit has most similar to low-intermediate sulfidation epitermal-type deposits.
 
Full-Text [PDF 5216 kb]   (258 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Aghanabati A., "Geology of Iran", Publications of Geological survey of Iran (2006) 1-485.
2. [2] Valizadeh M. V., "Geological investigations of Main intrusions of the Central Alborz", Internal Reports, Geological survey of Iran (2007).
3. [3] Gorbani M., "Introduction to the Economic Geology of Iran", (2002) 1-655.
4. [4] Khoie N., "Copper Deposits in Iran", (1999) 1-418.
5. [5] Consulting Engineers of the Tehran Padir., "Exploration end report of the Cheraghi copper", (2017) 1-211.
6. [6] Vahdati Daneshmand S., "Geology map of East of Tehran with a scale of 1: 100,000", Geological survey of Iran (1997).
7. [7] Haghipour H., Vahdati S., "Geology map of Tehran with a scale of 1: 250,000", Geological survey of Iran (1986).
8. [8] Consulting Engineers of the Kan., "Report of geology map of Lapeh-Zanak with a scale of 1:10000" (2015).
9. [9] Bodnar R. J., "Revised equation and table for determining the freezing point depression of H2O-NaCl solution", Geochimica et Cosmochimica Acta 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
10. [10] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming mineral", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
11. [11] Roedder E., "Fluid inclusions", Reviews in Mineralogy 12 (1984) 1-644 [DOI:10.2465/minerj.12.1]
12. [12] Goldstein R. H., Reynolds T. J., "Systematics of fluid inclusions in diagenetic minerals", SEPM Short Course Notes 31 (1994) 1-199. [DOI:10.2110/scn.94.31.0001]
13. [13] Kerkhof A. M. V. D., Hein U. F., "Fluid inclusion petrography", Lithos 55 (2001) 27-47. [DOI:10.1016/S0024-4937(00)00037-2]
14. [14] Shepherd T. J., Rankin A. H., Alderton D. M. H., "Practical Guide to Fluid Inclusion Studies", Glasgow and London (1985) 1-239.
15. [15] Davis D. W., Lowenstein T. K, Spencer R. J., "Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O", Geochimica et Cosmochimica Acta 54 (1990) 591-601. [DOI:10.1016/0016-7037(90)90355-O]
16. [16] Crawford M., "Fluid inclusions: Applications to petrology", Mineral Association of Canada publications, Short Course 6 (1981) 1-304.
17. [17] Moncada D., Mutchler S., Niebto A., Reynolds T. J., Rimstidt J. D., Bodnar R. J., "Mineral textures and fluid inclusio petrography of the epithermal Ag-Au deposits", Journal of Geochemical Exploration 114 (2012) 20-35. [DOI:10.1016/j.gexplo.2011.12.001]
18. [18] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
19. [19] Bakker R. J., "Package fluids 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties", Chemical Geology 194 (2003) 3-23. [DOI:10.1016/S0009-2541(02)00268-1]
20. [20] Mehvari R., Shamsipour R., Bagheri H., Noghreyan M., Mackizadeh M. A., "Mineralogical and fluid inclusion studies in the Kalchueh copper-gold deposit, East of Isfahan", Iranian Journal of Economic Geology 2 (2010) 47-55.
21. [21] Seward T. M., "The hydrothermal geochemistry of gold", In: Foster, R. P. (ed.), Gold Metallogeny and Exploration, Blakie and Sons Ltd (1991) 1-432. [DOI:10.1007/978-1-4613-0497-5_2]
22. [22] John D. A., Vikre P. G., Du Bray E. A., Blakely R. J., Fey D. L., Rockwell B. W., Mauk J. L., Anderson E. D., Graybeal F. T., "Descriptive Models for Epithermal Gold-Silver Deposits", Scientific Investigations Report (2018) 1-264. [DOI:10.3133/sir20105070Q]
23. [23] Simmons S. F., White N.C., John D. A., "Geological characteristics of epithermal precious and base metal deposits". In: Hedenquist, J. W., Thompson J. F. H., Goldfarband R. J., Richard J. P., (Editors), Economic Geology, 100th Anniversary Volume: 1905-2005., Society of Economic Geologists, Littleton, Colorado (2005) 485-522. [DOI:10.5382/AV100.16]
24. [24] Hedenquist J. W., Arribas, A., "Epithermal ore deposits: First-order features relevant to exploration and assessment", 14th Conference of Mineral Resources to Discovery, The Society for Geology Applied to Mineral Deposits Biennial Meeting, Quebec, Canada (2017).
25. [25] Rowland J. V., Simmons S. F, "Hydrologic, magmatic, and tectonic controls on hydrothermal flw, Taupovolcanic zone, New Zealand-Implications for the formation of epithermal vein deposits", Economic Geology 107 (2012) 427-457. [DOI:10.2113/econgeo.107.3.427]
26. [26] Ebert S. W., Rye R. O, "Secondary precious metal enrichment by steam-heated fliuds in the Crofoot-Lewis hot spring gold-silver deposit and relation to paleo climate", Economic Geology 92 (1997) 578-600. [DOI:10.2113/gsecongeo.92.5.578]
27. [27] Guilbert J., Park F., "The Geology of Ore Deposits", Freeman, New York (1997) 530-537.
28. [28] Smith D. M., Albinson T., Sawkins F. J., "Geologic and fluid inclusion studies of the Tayoltita silver-gold vein deposit, Durango, Mexico", Economic Geology 77 (1982) 1120-1145. [DOI:10.2113/gsecongeo.77.5.1120]
29. [29] Mango H., Arehart G., Oreskes N., Zantop H., "Origin of epithermal Ag-Au-Cu-Pb-Zn mineralization in Guanajuato, Mexico", Mineralium Deposita 49 (2014) 119-143. [DOI:10.1007/s00126-013-0478-z]
30. [30] Hedenquist J. W., Arribas A. R., Gonzalez-Urien E., "Exploration for epithermal gold deposits in Hagemann," S. G., and Brown, P. E., eds., Gold in: Society of Economic Geologists, Reviews in Economic Geology 13 (2000) 245-277. [DOI:10.5382/Rev.13.07]
31. [31] Mehrabi B., Ghasemi Siani M., "Mineralogy and economic geology of Cheshmeh Hafez polymetal deposit, Semnan Province, Iran", Iranian Journal of Economic Geology 2 (2010) 1-20.
32. [32] Yılmaz H., Oyman T., Sönmez F. N., Arehart G. B., Billor Z., "Intermediate sulfidation epithermal gold-base metal deposits in tertiary subaerial volcanic rocks", Ore Geology Reviews 37 (2010) 236-258. [DOI:10.1016/j.oregeorev.2010.04.001]
33. [33] Simpson M. P., Palinkas S. S., Mauk J. L., Bodnar R. J., "Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand", Economic Geology 110 (2015) 763-786. [DOI:10.2113/econgeo.110.3.763]
34. [34] Salehi Tinooni M., Abedini A., Calagari A. A., "Type of mineralization and studies of fluid inclusions of the Bolboli2 copper ore deposit, northeast of Sirjan, SE Iran", Iranian Journal of Crystallography and Mineralogy 28 (2020) 329-340 (in Persian). [DOI:10.29252/ijcm.28.2.329]
35. [35] Salehi Tinooni M., Abedini A., Calagari A. A., "Investigation of mineralization, REE geochemistry, and fluid inclusions sudies of the Shalang vein-type polymetallic ore deposit, southwest of Kerman", Iranian Journal of Crystallography and Mineralogy 27 (2019) 767-780 (in Persian). [DOI:10.29252/ijcm.27.4.767]
36. [36] Ghorbani Pour Shokouh H., Abedini A., Alipour S., "Study of ore mineralization of polymetallic veins of the Qarah Changal area, northwest of Qazvin", Iranian Journal of Crystallography and Mineralogy 27 (2021) 221-236 (in Persian). [DOI:10.52547/ijcm.29.1.221]
37. [37] Ajalli N., Torkian A., Tale Fazel E., "Intermediate sulfidation epithermal Cu±Au deposit of Rasht Abad (North of Zanjan): Evidence of mineralization, fluid inclusions and C-O stable isotope", Iranian Journal of Crystallography and Mineralogy 29 (2021) 207-220 (in Persian). [DOI:10.52547/ijcm.29.1.207]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb