Volume 30, Issue 2 (5-2022)                   www.ijcm.ir 2022, 30(2): 15-15 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghipour, Jahangirzadeh. Mineralogy and geochemistry of major, trace and REE elements, Pirashkaft Bauxite Deposits, Mamasani, Fars Province. www.ijcm.ir 2022; 30 (2) :15-15
URL: http://ijcm.ir/article-1-1742-en.html
Abstract:   (1171 Views)
The Pirashkaft bauxite deposit is located in north of the Paskuhak anticline in the Fars Province. The bauxite deposit present between Sarvak and Gurpy Formations, and formed during the Late Turonian time as a consequent of the Laramid orogeny phase. According to the geological investigations, the Pirashkaft bauxite is  Karstic type. The residual ore studied in the Pirashkaft can be classified into three groups: 1) kaolinite bauxite, 2) bauxite and 3) ferrite bauxite. Petrographically, pisolithic–oolithic is the most important texture. Mineralogically, the main minerals include boehmite, hematite, diaspore and kaolinite and minor minerals comprised of: gibbsite and rutile. The major oxides in the bauxite horizons mainly included: Al2O3 (37.88- 55.45wt%), SiO2 (2.01- 30.49wt%), Fe2O3(10.14- 36.71wt%) and LOI ( 9.72- 15.32wt%). There is a strong positive correlation between Al2O3 and TiO2, and also an enrichment of LREE (136.49- 928.56 ppm) relative to HREE (16.48-59.5 ppm) is observed in the bauxitic horizons.  The Eu / Eu* anomaly of the bauxite samples ranges between 0.26 and 0.99. Positive anomaly of Ce / Ce* between 1.2 and 2.33, indicates the dominant oxidation during bauxitization.
Full-Text [PDF 7099 kb]   (399 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Bardossy G., "Karst bauxites: developments in economic geology", (1984).
2. [2] Boni M., Rollinson G., Mondillo N., Balassone G., Santoro L., "Quantitative mineralogical characterization of karst bauxite deposits in the Southern Apennines, Italy", Econ. Geol. 108 (2013) 813-833. [DOI:10.2113/econgeo.108.4.813]
3. [3] Abedini A., Calagari A.A., "REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran", Turk. J. Earth Sci. 23 (2014) 513-532. [DOI:10.3906/yer-1404-11]
4. [4] Mongelli G., Buccione R., Gueguen E., Langone A., Sinisi R., "Geochemistry of the apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography", Ore Geology Reviews, 77 (2016) 246-259. [DOI:10.1016/j.oregeorev.2016.03.002]
5. [5] Calagari A. A., Abedini A., "Geochemical investigations on Permo-Triassic bauxit horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran", Journal of Geochemical Exploration, 94(1), 1-18. [DOI:10.1016/j.gexplo.2007.04.003]
6. [6] Garrels R.M., Christ C.L., "Solutions, Minerals and Equilibria. Harper and Row,New York", pp. 450. Geochemical Journal 37 (1965) 627-637.
7. [7] Karimpour M., Saadat S., "Applied Economic Geology", Mashhad Ferdowsi University (in persian) (2002).
8. [8] Zarasvandi A., Zamanian H., Hejazi E., "Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran", Journal of Geochemical Exploration, 107 (2010) 77-85. [DOI:10.1016/j.gexplo.2010.06.007]
9. [9] Agha Nabati A., Geology of Iran, Geological Survey of Iran. (in persian)" (2004).
10. [10] Aleva G.J.J., "Laterites: Concepts, Geology, Morphology and Chemistry; International Soil Reference and Information Centre (ISRIC):Wageningen, The Netherlands", 1994; Volume 169.
11. [11] Mameli P., Mongelli G., Oggiano G., Dinelli E., "Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity", International Journal of Earth Sciences, 96(5) (2007) 887-902. [DOI:10.1007/s00531-006-0142-2]
12. [12] Meyer F. M., Happel U., Hausberg J., Wiechowski A., "The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela", Ore Geology Reviews, 20(1-2) (2002) 27-54. [DOI:10.1016/S0169-1368(02)00037-9]
13. [13] Karadağ M. M., Küpeli Ş., Arýk F., Ayhan A., Zedef V., Döyen A., "Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya-Southern Turkey)", Chemie der Erde-Geochemistry, 69(2) (2009) 143-159. [DOI:10.1016/j.chemer.2008.04.005]
14. [14] Özlü N., "Trace-element content of Karst Bauxites and their parent rocks inthe Mediterranean Belt", Mineral. Depos. 18 (1983) 469-476. [DOI:10.1007/BF00204491]
15. [15] Wang Q.F., Liu X.F., Yan C.H., Cai S.H., Li Z.M., Wang Y.R., Zhao J.M., Li G.J., "Mineralogical and geochemical studies of boron-rich bauxite ore deposits inthe Songqi region, SW, Henan", China. Ore Geol. Rev. 48 (2012) 258-270. [DOI:10.1016/j.oregeorev.2012.04.004]
16. [16] Liu X., Wang Q., Deng J., Zhang Q., Sun S., Meng J., "Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China", Journal of Geochemical exploration, 105(3) (2010) 137-152. [DOI:10.1016/j.gexplo.2010.04.012]
17. [17] Meshram R. R., Randive K. R., "Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics", Journal of Asian Earth Sciences, 42(6) (2011) 1271-1287. [DOI:10.1016/j.jseaes.2011.07.014]
18. [18] Maclean W. H., Bonavia F. F., Sanna G., "Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia", Mineralium Deposita, 32(6) (1997) 607-616. [DOI:10.1007/s001260050126]
19. [19] Tang H.S., Chen Y.J., Wu G., Yang T., "Rare earth element geochemistry of carbonates of Dashiqiao Formation, Liaohe Group, eastern Liaoning province: implications for Lomagundi Event", Acta Petrol Sin-Engl 25 (2009) 3075-3093.
20. [20] Tang H.S., Chen Y.J., Santosh M., Zhong H., Yang T., "REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event", Precambrian Res 227 (2013) 316-336. [DOI:10.1016/j.precamres.2012.02.005]
21. [21] Deng X.H., Chen Y.J., Yao J.M., Bagas L, Tang H.S., "Fluorite REE-Y(REY) geochemistry of the ca. 850 Ma Tumen molybdenite-fluorite deposit, eastern Qinling, China: constraints on ore genesis", Ore Geol Rev 63 (2014) 532-543. [DOI:10.1016/j.oregeorev.2014.02.009]
22. [22] Chen Y.J., Tang H.S., "The great oxidation event and its records in North China Craton. In: Zhai MG, Zhao Y, Zhao TP (eds) Main tectonic events and metallogeny of the North China Craton", Springer, Singapore, (2016) pp 281-304 [DOI:10.1007/978-981-10-1064-4_11]
23. [23] Compton J.S., White R.A., Smith M., "Rare earth element behavior in soilsand salt pan sediments of a semi-arid granitic terrain in the Western Cape,South Africa", Chem. Geol. 201, (2003) 239-255. [DOI:10.1016/S0009-2541(03)00239-0]
24. [24] Esmaeily D., Rahimpour-Bonab H., Esna-Ashari A., Kananian A., "Petrography and geochemistry of the Jajarm Karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis", Turk J Earth Sci 19 (2010) 267-284 [DOI:10.3906/yer-0806-15]
25. [25] Mongelli G., Boni M., Buccione R., Sinisi R., "Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities", Ore Geology Reviews, 63 (2014) 9-21. [DOI:10.1016/j.oregeorev.2014.04.012]
26. [26] Khosravi M., Abedini A., Alipour S., Mongelli G., "The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental affinities", J Afr Earth Sci 129 (2017) 960-972 [DOI:10.1016/j.jafrearsci.2017.02.024]
27. [27] Defant M.J., Drummond M.S., "Derivation of some modern arc magmas by melting of young subducted lithosphere", Nature, 347(6294) (1990) 662-665. [DOI:10.1038/347662a0]
28. [28] Schroll E., Sauer D., "Beiträgezur Geochemie von Titan, Chrom, Nickel, Cobalt,Vandium und Molybdän in bauxitishcen Gesteinen und das Problem der stoffichen Herkunft des Alumniums", Travax du l'ICSOBA, Zagreb, vol. 5 (1968) pp. 83-96.
29. [29] Salamab-Ellahi S., Taghipour B., Mongelli G., "Clayey bauxite from the Irano-Himalayan belt: Critical metals, provenance and palaeoclimate in the Upper Cretaceous Semirom ore deposit, Zagros Mountain, Iran", Journal of Asian Earth Sciences, 172, 126-142.Schellmann W (1986) A new definition of laterite. Memoirs Geol Surv India 120:1-7. [DOI:10.1016/j.jseaes.2018.09.001]
30. [30] Ahmadnejad F., Zamanian H., Taghipour B., Zarasvandi A., Buccione R., Ellahi S. S., "Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity", Ore Geology Reviews, 86 (2017) 755-783. [DOI:10.1016/j.oregeorev.2017.04.006]
31. [31] Braun J.J., Pagel M., Muller J.P., Bilong P., Michard A., Guillet B., "Ce anomalies in lateritic profiles", Geochim Cosmochim Acta 54 (1990) 781-795. [DOI:10.1016/0016-7037(90)90373-S]
32. [32] Mongelli G., Taghipour B., Sinisi R., Khadivar S., "Mineralization and element redistribution in the Chah-Gheib Ni-laterite ore zone, Bavanat, Zagros Belt, Iran", Ore Geology Reviews, 111 (2019) 102990. [DOI:10.1016/j.oregeorev.2019.102990]
33. [33] Abedini A., Khosravi M., Calagari A. A., "Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements", Journal of Geochemical Exploration, 200 (2019) 249-265. [DOI:10.1016/j.gexplo.2018.09.004]
34. [34] Boynton W.V., "Geochemistry of the REE: meteorite studies", Pp. 63-114 in. Rare earth element geochemistry (P.Henderson, editor). Elsevier, Amsterdam (1984). [DOI:10.1016/B978-0-444-42148-7.50008-3]
35. [35] Mondillo N., Balassone G., Boni M., Rollinson G., "Karst bauxites in the Campania Apennines (southern Italy): a new approach", Periodico di Mineralogia, 80(3) (2011) 407-432.
36. [36] Zamanian H., Ahmadnejad F., Zarasvandi A., "Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran", Geochemistry, 76(1) (2016) 13-37. [DOI:10.1016/j.chemer.2015.10.001]
37. [37] Valeton I., Biermann M., Reche R., Rosenberg F., "Genesis of nickel lateritesand bauxites in Greece during the Jurassic and Cretaceous, and their relation toultrabasic parent rocks", Ore Geol. Rev. 2 (1987) 359-404. [DOI:10.1016/0169-1368(87)90011-4]
38. [38] Taylor S.R., McLennan S.M., "The Continental Crust: Its Composition andEvolution". Blackwell Oxford, (1995) pp. 1-312.
39. [39] Liu X., Wang Q., Feng Y., Li Z., Cai S., "Genesis of the Guangou karstic bauxite deposit in western Henan, China", Ore Geology Reviews, 55 (2013) 162-175. [DOI:10.1016/j.oregeorev.2013.06.002]
40. [40] Temur S., Kansun G., "Geology and petrography of the Masatdagi diasporic bauxites, Alanya, Antalya, Turkey", Journal of Asian Earth Sciences, 27(4), 512-522. [DOI:10.1016/j.jseaes.2005.07.001]
41. [41] Zarasvandi A., Carranza E. J. M., Ellahi S. S. "Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran", Ore Geology Reviews, 48 (2012) 125-138. [DOI:10.1016/j.oregeorev.2012.02.010]
42. [42] Salafzoon. M., "Mineralogy, geochemistry and determination of the origin of Semirom bauxite deposit, high Zagros", Master Thesis, Shiraz University. (in persian)" (2015).
43. [43] Azarnia S., "Mineralogy, geochemistry and determination of the origin of Lodab, bauxite deposits,Yasuj, Kohgoluyeh and Boyer-Ahmad. Master Thesis, Shiraz University. (in persian)" (2017).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb