Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 59-74 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tajbakhsh G, Khodami M, Monsef R. Mineral chemistry and geothermo-barometry based on amphibole of alkali gabbro dykes of Zarigan, northeast of Bafq. www.ijcm.ir 2023; 31 (1) :59-74
URL: http://ijcm.ir/article-1-1738-en.html
1- University of Yazd
2- Islamic Azad University
Abstract:   (848 Views)
Many mafic dykes, with the Early Paleozoic age, have intruded into Zarigan granitoid pluton and its host sedimentary units in the northeast of Bafq city. Petrographycal studies show these dykes are alkaline gabbro to monzogabbro with medium to fine grain intergranular to granular textures. Major minerals include clinopyroxene, amphibole and plagioclase and minor minerals are a few amounts of biotite, olivine, alkali feldspar, and nepheline. Amphiboles are calcic and belong to kaersutite-potasic kaersutite type. Geothermo-barometry calculations, based on amphibole mineral, show the prevailing pressure and temperature of kaersutites crystallization at 6.3-8.2 Kbar and 1040-1140 °C. According to geochemical composition, kaersutites are in the range of alkaline amphiboles, so that they are derived from mantle and are related to intercontinental extensional tectonic environment. Based on these evidences, minerals have been crystallized from the magmas originated from asthenospheric upwelling during Paleo-Tethys early rifting and associated with Posht-e-Badam block basement tension faults function.
Full-Text [PDF 3683 kb]   (288 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Martin R. F., "Amphiboles in the igneous environment, Reviews in Mineralogy and Geochemistry", 67 (2007) 323-358.‏ [DOI:10.2138/rmg.2007.67.9]
2. [2] Mutch E. J. F., Blundy J. D., Tattitch B. C., Coope, F. J., Brooker R. A., "An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer", Contributions to Mineralogy and Petrology, 171 (2016) (10) 1-27. [DOI:10.1007/s00410-016-1298-9]
3. [3] Ridolfi F., Renzulli A., Puerini M., "Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes", Contribution to Mineralogy and petrology, 160(2010) 45-66. [DOI:10.1007/s00410-009-0465-7]
4. [4] Putirka K., "Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes", Am. Mineral., 101 (2016) 841-858. [DOI:10.2138/am-2016-5506]
5. [5] Hagen E., "A Comparative Study of Kaersutite in the Egersund Dikes and SNC Meteorites" Doctoral dissertation", The Ohio State University (2017) 42 p.
6. [6] Balaghi Z., Sadegheian M., Ghasemi, H., "Petrogenesis of the lower Paleozoic igneous rocks, south of Bahabad (bafq, Central Iran): implication for rifting", Iranian Journal of Petrology, 1 (2011) 45-64.
7. [7] Rajabi A., Canet C., Rastad E., Alfonso, P., "Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn. Pb deposits of the Early Cambrian Zarigan. Chahmir Basi Central Iran", Ore Geology Reviews, 64 (2015) 328-353. [DOI:10.1016/j.oregeorev.2014.07.013]
8. [8] Niktabar S. M., Rashidnejad Omran N., "Geochemistry and petrology of rift-related mafic sills and arc-related Gabbro-Diorite bodies, Northern Bafq District, Central Iran", Acta Geochim 37 (2018) 180-192. [DOI:10.1007/s11631-017-0191-1]
9. [9] Tajbakhsh G., ‏"Petrography, geochemistry and tectonic setting of mafic dyke swarms of Zrigan granitoid, north of Bafq (Central Iran)",‏ Geosciences 30 (2020) 175-188‏.
10. [10] Mehdipour Ghazi J., Moazzen, M., Rahgoshay M., Wilde S. A., "Zircon U-Pb-Hf isotopes and whole rock geochemistry of magmatic rocks from the Posht-e-Badam Block: A key to tectonomagmatic evolution of Central Iran", Gondwana Research 87 (2020) 162-187.‏ [DOI:10.1016/j.gr.2020.06.010]
11. [11] Alavi M., "Sedimentary and structural characteristics of the paleo-tethys remnants in northern Iran", Geological Society of American Bulletin 103 (1991) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
12. [12] Majidi J., Babakhani A.R., "Geological map of Ariz", Tehran. Geological survey of Iran, scale 1:100000, (2000).
13. [13] Ramezani J.,Tucker R., "The Saghand region, Central Iran: U/Pb geochronology, petrogenesis and implication for Gondwana tectonics", American Journal of Science, 303 (2003) 622-665. [DOI:10.2475/ajs.303.7.622]
14. [14] Jami M., "Geology, Geochemistry Esfordi Phosphate-Iron Deposit, Bafq Area, Central Iran", PhD thesis, The University of new South wallets, (2005) 384 p..
15. [15] Leake B.E., Woolley A. R., Arps C. E., Birch W. D., Gilbert M. C., Grice, J. D., Youzhi, G., "Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association", American Mineralogist 83 (1997) 1019-1037.
16. [16] Giret A., Bonin B., Léger J.M., "Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring complexes", The Canadian Mineralogist, 18 (1980) 481-495.
17. [17] Plat R.G., "The ijolite-series rocks. In: Mitchell, R.H. Eds., Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis and Economic Potential", Mineralogical Association of Canada Short Course 24 (1996) 101-122.
18. [18] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes rendus Geoscience, 337, (2005) 1415-1420. [DOI:10.1016/j.crte.2005.09.002]
19. [19] Foster M. D., ''Interpretation of the composition of the trioctahedral micas'', United States Geological Survey Professional Paper, 354 (1960) 11-49. [DOI:10.3133/pp354B]
20. [20] Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons", American Mineralogist, 72 (1987) 231-239.
21. [21] Hammarstrom J.M., Zen E.A., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist, 71 (1986) 1297-1313.
22. [22] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in hornblende geobarometer with application to Long Valley (California) volcanic rocks", Geology, 17 (1989) 837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
23. [23] Schmidt M. W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al -in hornblende barometer", Contribution to Mineralogy and Petrology, 110 (1992) 304-310. [DOI:10.1007/BF00310745]
24. [24] Colombi A., "Me ́tamorphism et ge ́ochimie des rochesmafiques des Alpesouest-centrales (géoprofil Vie'ge-Domodosso la Locarno)", Mem Geol Lausanne 4 (1989).
25. [25] Helz R.T., "Phase rections of basaltsin their meling range at PH2O=5kb. Part II. Melt composition", Journal of Petrology, 17 (1973) 139-193. [DOI:10.1093/petrology/17.2.139]
26. [26] Ernst W. G., Liu J., "Experimental phaseequilibrium study of Al- and Ti-contents of calcicamphibole in MORB- A semiquantitative thermobarometer", American Mineralogist, 83 (1998) 952-969. [DOI:10.2138/am-1998-9-1004]
27. [27] Liao Y., Wei C., Rehman H. U., Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist Materials, 106 (2021) 180-191.‏ [DOI:10.2138/am-2020-7409]
28. [28] Humphreys M.C.S., Edmonds M., Christopher T., Hards V., "Chlorine variations in the magma of Soufrie're Hills Volcano,Montserrat: Insights from Cl in hornblende and melt inclusions", Geochimica et Cosmochimica Acta 73 (2009) 5693-5708. [DOI:10.1016/j.gca.2009.06.014]
29. [29] Frost D.J., "The stability of hydrous mantle phases", Reviews in Mineralogy and Geochemistry 62 (2006) 243-271.‏ [DOI:10.2138/rmg.2006.62.11]
30. [30] Douce A. E. P., "Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability", Chemical Geolog, 108 (1993) 133-162. [DOI:10.1016/0009-2541(93)90321-9]
31. [31] Henry D.J., Guidotti C.V., Thomson J.A., "The Ti-saturation surface for low-to-medium pressure metapelitic: Implications for geothermometry and Ti-substitution mechanisms", American Mineralogist 90 (2005) 316-328. [DOI:10.2138/am.2005.1498]
32. [32] Mann U., Marks M., & Markl G., "Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany", Litho, 91 (2006) 262-285.‏ [DOI:10.1016/j.lithos.2005.09.004]
33. [33] Wones D. R., "Significance of the assemblage titanite+magnetite+quartz in granitic rocks", American Mineralogist, 74 (1989) 744-749.
34. [34] Anderson J. L., Smith D. R., "The effects of temperature and fO2 on the Al-in-hornblende barometer", American Mineralogist, 80 (1995) 549-559. [DOI:10.2138/am-1995-5-614]
35. [35] Jiang C.Y., An S.Y., "On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance (in Chinese with English abstract)", Journal of Mineralogy and Petrology, 3 (1984) 1-9.
36. [36] Coltorto M., Bondaiman C., Faccini B., Geogoire M., O'Reilly S.Y., Powell W., "Amphibol from suprasubduction and intraplate lithospheric mantle", Lithos, 99 (2007) 68-84. [DOI:10.1016/j.lithos.2007.05.009]
37. [37] Mayer B., Jung S., Romer R. L., Pfänder J. A., Klügel A., Pack A., Gröner E., "Amphibole in alkaline basalts from intraplate settings: implications for the petrogenesis of alkaline lavas from the metasomatised lithospheric mantle", Contributions to Mineralogy and Petrology 167 (2014) 1-22. [DOI:10.1007/s00410-014-0989-3]
38. [38] Ulrych J., Krmíček L., Teschner C., Skála R., Adamovič J., Ďurišová J., Radoň M., "Chemistry and Sr-Nd isotope signature of amphiboles of the magnesio-hastingsite-pargasite-kaersutite series in Cenozoic volcanic rocks: Insight into lithospheric mantle beneath the Bohemian Massif", Lithos 312 (2018) 308-321. [DOI:10.1016/j.lithos.2018.05.017]
39. [39] McSween Jr H. Y., "What we have learned about Mars from SNC meteorites", Meteoritics 29 (1994) 757-779.‏ [DOI:10.1111/j.1945-5100.1994.tb01092.x]
40. [40] Chiu H. Y., Chung S. L., Zarrinkoub M. H., Melkonyan R., Pang K. N., Lee H. Y., Khatib M. M., "Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt" Journal of Asian Earth Sciences 145 (2017) 652-669.‏ [DOI:10.1016/j.jseaes.2017.06.011]
41. [41] Lasemi Y., "Depositional environments of the Ordovician rocks of Iran (syn-rift sequence) and formation of the Paleotethys passive margin" Proceedings of the 17th annual meeting of the Geological Survey of Iran Tehran, Iran (in Persian) (1999).
42. [42] Ghasempour M. R., Davoudian A. R., Shabanian N., Moeinzadeh H., Nakashima K., "Geochemistry and mineral chemistry of gabbroic rocks from Horjand of Kerman province, Southeast of Iran: Implications for rifting along the northeastern margin of Gondwana", Journal of Geodynamics 133 (2020): 101675.‏ [DOI:10.1016/j.jog.2019.101675]
43. [43] Golestani M., "Characteristics of tectono-magmatic alkali gabbros in northern Fathabad, Zarand (NW Kerman): based on the pyroxene mineral chemistry", Iranian Journal of Crystallography and Mineralogy 28 (2020) 311-328. [DOI:10.29252/ijcm.28.2.311]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb