Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 151-164 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golshani Nasab N, Jafari Rad A R, Moayyed M, Nezafati N. The origin and evolution process of ore-forming fluids in the Jizvan area (northwest of Zanjan): based on fluid inclusions study. www.ijcm.ir 2023; 31 (1) :151-164
URL: http://ijcm.ir/article-1-1736-en.html
Abstract:   (816 Views)
The Jizvan region with an area of ​​45 km2 is located about 70 km northwest of Zanjan town in the Tarom-Hashtjin metallogenic zone. The major rock units in the Jizvan area consist of a regular sequence of thin-layered tuff and breccia tuff with intermediate to basic compositions, interlayered with andesites and basalts. In addition, volcanic trachytic and porphyry andesitic rock units are also scattered in the region. Parts of the tuff and breccia tuff sequence are intruded by hypabyssal quartz monzonite, monzodiorite and syenite intrusions in the east of the region. As a result of this event, due to the presence of linear structures and the invasion of hydrothermal fluids, the above-mentioned rocks are affected by advanced argillic alteration. Carbonatic (malachite) and sulfidic (chalcopyrite, bornite, tetrahedrite-tennantite and chalcocite-covellite) copper mineralizations, along with pyrite, galena, sphalerite, arsenopyrite, quartz, calcite and goethite minerals are developed with a vein-veinlet texture in the above-mentioned units. Using the study of primary biphase fluid inclusions containing liquid and gas phases, homogenization temperatures from 95.6 °C to 268.9 °C with the highest frequency at 185 °C are recorded. The salinity of mineralizing fluids is between 4.65 and 23.8 wt% NaCl equivalent, while their density falls in the range from 0.77 to 1.08 g/cm3. Based on the fluid inclusion data, the mixing between magmatic and meteoric waters is the main cause for precipitation of metallic elements and the occurrence of mineralization in Jizvan area. These data overlap with the representative data of epithermal deposits.
Full-Text [PDF 4317 kb]   (313 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Nabavi M. H., "An introduction to the geology of Iran", Geological survey of Iran, 109p (1976).
2. [2] Eftekharnezhad J., "Separation of different parts of Iran in terms of construction status in relation to sedimentary areas", Journal of the Oil Association, No. 8 (1980).
3. [3] Aghanabati S. A., "The Geology of Iran", Geological Survey of Iran. 600p (2004).
4. [4] Ghorbani M., "The Economic Geology of Iran", Mineral Deposits and Natural Resources. Springer, London, (2013) 569p. [DOI:10.1007/978-94-007-5625-0]
5. [5] Khakzad A., Hajalilou B., "Investigation on Pb, Zn and Cu mineralization in northwest of Zanjan and east of Mianeh and their relation to pervasive hydrothermal alteration", In 3rd Symposium of Geological Society of Iran, University of Shiraz, Shiraz, Iran (in Persian with English abstract) (1999).
6. [6] Feyzi M., Ebrahimi M., Kouhestani H., Mokhtari M. A. A., "Geology, mineralogy and geochemistry of Aghkand copper mine (North of Zanjan, Tarom-Hashtjin area)", Journal of Economic Geology, 8 (2) (2017) 507-524.
7. [7] Kouhestani H., Mokhtari M. A. A., Qin K., Zhao J., "Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom-Hashtjin metallogenic belt, NW Iran", Ore Geology Reviews, 109 (2019) 564-584. [DOI:10.1016/j.oregeorev.2019.05.014]
8. [8] Yasami N., Ghaderi M., "Distribution of alteration, mineralization and fluid inclusion features in porphyry-high sulfidation epithermal systems: The Chodarchay example", NW Iran. Ore Geology Reviews, 104 (2019) 227-245. [DOI:10.1016/j.oregeorev.2018.11.006]
9. [9] Abedini A., "Geochemistry of Argillic Alteration: A Case Study from the Jizvan Area, Tarom-Hashtjin Zone", Geosciences, 26 (104) (2017) 3-16.
10. [10] Abedini A., Calagari A. A., Nasseri H., "Mineralization and REE geochemistry of the hydrothermal quartz and calcite of the Helmesi vein-type copper deposit, NW Iran", Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 281 (2016) 123-134. [DOI:10.1127/njgpa/2016/0591]
11. [11] Faridi M., Anvari A., "Geological map 1/100000 Hashtjin Ardabil province", Geological Survey of Iran (2000).
12. [12] Moayyed M., Talebi Rad F., Ravankhah A., Baghernejhad M., Behmaram H., Ahmadi M., Hosseinzadeh N., "Geological map of Jizvan (scale 1:5000)", Iranian Mines & Mining Industries Development & Renovation (IMIDRO) (2018).
13. [13] Clark G. C., Davis R. G., Hamzehpour B., Jones C. R., "Explanatory text of the Bandar-e-Anzali quadrangle map, scale 1: 250,000", Geological Survey of Iran, 198 (1975).
14. [14] Moayyed M., "Petrological investigations of the Western Alborz- Azarbaijan Tertiary volcano- plutonic belt with special view on Hashjin area", Ph.D. Thesis, Faculty of Earth Sciences, Shahid Beheshti University, 328p (2000).
15. [15] Yousefi Bavil A., Moayyed M., Ravankhah A., "Structural and geomechanical study of deformation in Jizvan Alteration zone (northeast of Zanjan). Thirty-sixth Assembly and the Third International Congress of Earth Sciences", Geological Survey and Mineral Exploration Organization, Tehran, Iran (2017).
16. [16] Moayyed M., Talebi Rad F., Ravankhah A., Baghernejhad M., Behmaram H., Ahmadi M., Hoseinzadeh N., "Geological map of Jizvan (scale 1:25000)", Iranian Mines & Mining Industries Development & Renovation (IMIDRO) (2018).
17. [17] Hajaliloo B., "Tertiary metallurgy in western Alborz-Azerbaijan (Mianeh-Hashtrood) With a special view on the Hashtjin area. Ph.D. Thesis, Faculty of Earth Sciences", Shahid Beheshti University, 275p (1999).
18. [18] Hadizadeh H., Kalagary A., Abedini A., "Mineralogy, type and metallogenic power of alteration spots on the banks of the Ghezel Ozon River in northeastern Zanjan", Iranian Journal of Crystallography and Mineralogy (2006) 23-37.
19. [19] Mehrabi B., Siani M. G., Goldfarb R., Azizi H., Ganerod M., Marsh E. E., "Mineral assemblages, fluid evolution, and genesis of polymetallic epithermal veins, Glojeh district, NW Iran", Ore Geology Reviews, 78 (2016) 41-57. [DOI:10.1016/j.oregeorev.2016.03.016]
20. [20] Bodnar R.J., "Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta", 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
21. [21] Roedder E., "Fluid inclusions. Reviews in Mineralogy", Mineral. Soc. America, Washington., v. 12 (1984) 644p. [DOI:10.1515/9781501508271]
22. [22] Sheppard S. M., Harris C., "Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water", Contributions to Mineralogy and Petrology, 91 (1985) 74-81. [DOI:10.1007/BF00429429]
23. [23] Goldstein R.H., "Petrographic analysis of fluid inclusions. In: I. Samson, A. Anderson and D. Marshall (Eds.), Fluid Inclusions: Analysis and Interpretation", Mineral. Assoc. Canada, Short Course Ser. 32, pp.9-53.
24. [24] Barker C. E., Goldstein R. H., "Fluid inclusion technique for determining maximum temperature and its comparison to the vitrinite reflectance geothermometer", Geology 18 (1990) pp. 1003-1006. https://doi.org/10.1130/0091-7613(1990)018<1003:FITFDM>2.3.CO;2 [DOI:10.1130/0091-7613(1990)0182.3.CO;2]
25. [25] Fall A., Bodnar R. J., "How precisely can the temperature of a fluid event be constrained using fluid inclusions?", Economic Geology, 113 (2018) 1817-1843. [DOI:10.5382/econgeo.2018.4614]
26. [26] Lancazette A., "Application of linear elastic fracture mechanics to the quantitative evaluation of fluid inclusion decrepitation", Geology 18 (1990) pp. 782-785. https://doi.org/10.1130/0091-7613(1990)018<0782:AOLEFM>2.3.CO;2 [DOI:10.1130/0091-7613(1990)0182.3.CO;2]
27. [27] Goldstein R. H., Reynolds T. J., "Systematics of fluid inclusions in diagenetic minerals", Society of Sedimentary Geology Short Course 31 (1994) 199 p. [DOI:10.2110/scn.94.31]
28. [28] Van den Kerkhof A. M., Hein U. F., "Fluid inclusion petrography", Lithos, 55 (2001) 27-47. [DOI:10.1016/S0024-4937(00)00037-2]
29. [29] Roedder E., Bodnar R. J., "Geologic pressure determinations from fluid inclusion studies. Annual review of earth and planetary sciences", 8(1) (1980) 263-301. [DOI:10.1146/annurev.ea.08.050180.001403]
30. [30] Bodnar R.J., "Hydrothermal Solutions. in Encyclopedia of Geochemistry, C.P. Marshall and Fairbridge eds.", Kluwer Academic Publishers, Lancaster, (1999) 333-337. [DOI:10.1007/1-4020-4496-8_163]
31. [31] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos, 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
32. [32] Canet C., Franco S. I., Prol-Ledesma R. M., González-Partida E., Villanueva-Estrada R. E., "A model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn epithermal deposit, Western Mexico", Journal of Geochemical Exploration 110 (2011) 118-125. [DOI:10.1016/j.gexplo.2011.04.005]
33. [33] Chi G., Diamond L. W., Lu H., Lai J., Chu H., "Common problems and pitfalls in fluid inclusion study: a review and discussion", Minerals, 11, 7(1) (2021) 1-23. [DOI:10.3390/min11010007]
34. [34] Haas J. L., "The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure", Economic geology, 66 (2021) 940-946. [DOI:10.2113/gsecongeo.66.6.940]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb