Volume 30, Issue 1 (4-2022)                   www.ijcm.ir 2022, 30(1): 10-10 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavakoli, Rostami, Rasti. Genesis of the Tang Zagh iron deposit by using mineralogical and geochemical data, Hormozgan province. www.ijcm.ir 2022; 30 (1) :10-10
URL: http://ijcm.ir/article-1-1718-en.html
Abstract:   (1429 Views)
The Tang Zagh iron deposit is located about 117 km Northeast of Bandar Abbas, Hormozgan Province in the structural folded-thrusted zone of the Zagros basin. Iron mineralization occurs in the form of iron oxides (hematite) within the salt dome and/or in fractures and between the layers of the younger strata with the Tertiary age. Based on the microscopic studies, dolomitic fragments of the host rocks are surrounded by iron oxides during the replacement processes. The texture of ore is vein, veinlets, replacement, and open space filling. Hematite is the most abundant mineral in this deposit and goethite, dolomite and quartz minerals are the minor phases. According to geochemical data, the concentration of Fe2O3 in this deposit reaches up to more than 89 wt%. Low phosphorus and titanium levels and the absence of skarn-related features do not support the magmatic origin for this deposit. According to the field observation, mineralogical and geochemical properties, Tang Zagh iron deposit is formed in 4 stages: 1. Placement of volcanic material and the entrance of iron-bearing fluids of a volcanic origin in the sedimentary basin, 2. Enrichment of iron by hydrothermal fluid activity due to salt diapirism, 3. Reconcentration and redeposition of iron by tectonic activities and finally 4. Hematite, goethite and malachite minerals are formed due to the supergene processes and weathering on this deposit.
 
Full-Text [PDF 3261 kb]   (555 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Arian M., Noroozpour H., "Tectonic geomorphology of Iran's salt structures", Open Journal of Geology (2015) 5 (2): 61. [DOI:10.4236/ojg.2015.52006]
2. [2] Motamedi H., Sepehr M., Sherkati S., Pourkermani M., "Multi‐phase Hormuz salt diapirism in the southern Zagros, SW Iran", Journal of Petroleum Geology (2011) 34 (1): 29-43. [DOI:10.1111/j.1747-5457.2011.00491.x]
3. [3] Talbot C.J., "Extrusions of Hormuz salt in Iran", Geological Society of London, UK,
4. Special Publications (1998) 143 315-334. [DOI:10.1144/GSL.SP.1998.143.01.21]
5. [4] Ghazban F., Al-Aasm I.S., "Hydrocarbon-Induced Diagenetic Dolomite and Pyrite
6. Formation Associated with the Hormuz Island Salt Dome, Offshore Iran", Journal of Petroleum
7. Geology (2010) 33 (2): 183-196. [DOI:10.1111/j.1747-5457.2010.00472.x]
8. [5] Talbot C.J., Aftabi P., Chemia, Z., "Potash in a salt mushroom at Hormuz Island,
9. Hormuz Strait, Iran", Ore Geology Reviews (2009) 35 317-332. [DOI:10.1016/j.oregeorev.2008.11.005]
10. [6] Hassanlouei B.T., Rajabzadeh M.A., "Iron ore deposits associated with Hormuz evaporitic series in Hormuz and Pohl salt diapirs, Hormuzgan province, southern Iran", Journal of Asian Earth Sciences (2019) 172 30-55. [DOI:10.1016/j.jseaes.2018.08.024]
11. [7] Bosák P., Jaroš J., Spudil J., Sulovský P., Václavek V., "Salt Plugs in the Eastern
12. Zagros, Iran: Results of Regional Geological Reconnaissance", GeoLines (Praha) (1998) 7 3-174.
13. [8] Espahbod M.R., "The effect of compressional-tangential mechanism in creating of salt
14. diapirs and their relationship with acid-alkaline volcanites and lithophile elements, in:
15. Proceeding Symposium on Diapirism with Special Reference to Iran", Geological Survey of
16. Iran, Tehran (1990) 219-236.
17. [9] Thomas R.J., Ellison R.A., Goodenough K.M., Roberts N.M.W., Allen P.A., "Salt
18. domes of the UAE and Oman: Probing eastern Arabia", Precambrian Research (2015) 256 1-16. [DOI:10.1016/j.precamres.2014.10.011]
19. [10] Ghorbani M., "The Economic Geology of Iran, Mineral Deposits and Natural
20. Resources", (2013) Springer Verlag, Berlin.
21. [11] Atapour H., Aftabi A., "The possible synglaciogenic Ediacaran hematitic banded iron salt formation (BISF) at Hormuz Island, southern Iran: Implications for a new style of exhalative hydrothermal iron-salt system", Ore Geology Reviews (2017) 89 70-95. [DOI:10.1016/j.oregeorev.2017.05.033]
22. [12] Stöcklin J., "Salt deposits of the Middle East", Geological Society of America, Special
23. Publications (1968) 88 157-181. [DOI:10.2307/1970571]
24. [13] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): constraints from collisional and earlier deformation", International journal of earth sciences (2005) 94 (3): 401-419. [DOI:10.1007/s00531-005-0481-4]
25. [14] Stöcklin J., "Structural Correlation of the Alpine Ranges between Iran and Central Asia", Societe geologique de France, Paris, Memoire Hors Serie (1977) 333-353.
26. [15] Alian F., Bazamad M., "Petrography of Zendan salt dome (Hara), Bandar Lengehan, Iran", In 6th Symposium of Iranian society of Economic Geology, Sistan and Baluchestan University, Zahedan, Iran (2014).
27. [16] Blanford N.T., "Note on the geological formation seen along the coasts of Baluchistan and Persia from Karachi to the head of Persian Gulf", Geological Survey of India (1872) 5 5- 41.
28. [17] Richardson R.K., "Die Geologie und die Salzdoms in sud-Westhichen des Persischen Golfes: Verh. Naturh-med", (1972) Ver Teile Heidelberg D. S 15.
29. [18] Faramarzi N.S., Amini S., Schmitt A.K., Hassanzadeh J., Borg G., McKeegan K., Razavi S.M.H., Mortazavi S.M., "Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: a new Cadomian arc magmatism in the Hormuz Formation", Lithos (2015) 236-237: 203-211. [DOI:10.1016/j.lithos.2015.08.017]
30. [19] Fakhari M., "Bandarabbas geological compilation map". M. Fakhari Ph. D thesis uder supervision of S. Shahriyary, Islamis Azad university, (1994).
31. [20] Asadi Sarshar M., Moghadam H.S., Griffin W.L., Santos J.F., Stern R.J., Ottley C.J., Sarkarinejad K., Sepidbar F., O'Reilly S.Y., "Geochronology and geochemistry of exotic blocks of Cadomian crust from the salt diapirs of SE Zagros: the Chah-Banu example", International Geology Review (2020) 1-22. [DOI:10.1080/00206814.2020.1787236]
32. [21] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist )2010( 95 185-187. [DOI:10.2138/am.2010.3371]
33. [22] Jiang H., Jiang S.Y., Zhao K.D., Li W.Q., Liu H.C., "Origin of paleosubduction-modified mantle for Late Cretaceous (~100 Ma) diabase in northern Guangdong, South China: Geochronological and geochemical evidence", Lithos (2020) 370 105603. [DOI:10.1016/j.lithos.2020.105603]
34. [23] Otake T., Wesolowski D.J., Anovitz L.M., Allard L.F., Ohmoto H., "Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions", Earth and Planetary Science Letters (2007) 257 (1-2): 60-70. [DOI:10.1016/j.epsl.2007.02.022]
35. [24] Schwertmann U., Murad E., "Effect of pH on the formation of goethite and hematite from ferrihydrite", Clays and Clay Minerals (1983) 31(4): 277-284. [DOI:10.1346/CCMN.1983.0310405]
36. [25] Cudennec Y., Lecerf A., "The transformation of ferrihydrite into goethite or hematite, revisited", Journal of solid-state chemistry (2006) 179(3): 716-722. [DOI:10.1016/j.jssc.2005.11.030]
37. [26] He Y.T., Chen C.C., Traina S.J., "Inhibited Cr (VI) reduction by aqueous Fe (II) under hyperalkaline conditions", Environmental science & technology (2004) 38 (21): 5535-5539. [DOI:10.1021/es049809s]
38. [27] Sun Z., Wang J., Wang Y., and Long L., "Geochemical Characteristics of Mineral Assemblages from the Yamansu Iron Deposit, NW China, and Their Metallogenic Implications", Minerals (2020) 10 (1): 39. [DOI:10.3390/min10010039]
39. [28] Rajabzadeh M.A., Rasti S., "Investigation on mineralogy, geochemistry and fluid inclusions of the Goushti hydrothermal magnetite deposit, Fars Province, SW Iran: a comparison with IOCGs", Ore Geology Reviews (2017) 82 93-107. [DOI:10.1016/j.oregeorev.2016.11.025]
40. [29] Teutsong T., Temga J.P., Enyegue A.A., Feuwo N.N., Bitom D., "Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon", Acta Geochim (2020) https://doi.org/10.1007/s11631-020-00421-7 [DOI:10.1007/s11631-020-00421-7.]
41. [30] Angerer T., Hagemann S.G., Danyushevsky L.V., "Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia", Economic Geology (2012) 107 (4): 599-644. [DOI:10.2113/econgeo.107.4.599]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb