Volume 30, Issue 1 (4-2022)                   www.ijcm.ir 2022, 30(1): 1-1 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Movahedi, Yazdi, Behzadi. Thermobarometry and chemistry of garnet and pyroxene minerals of Oshvand skarn deposit, Nahavand, West Iran. www.ijcm.ir 2022; 30 (1) :1-1
URL: http://ijcm.ir/article-1-1709-en.html
Abstract:   (1640 Views)
The Oshvand Skarn deposit is located about 10 km east of Nahavand city in the Sanandaj-Sirjan structural zone. In this area, garnet (grossular-andradite) is the most abundant mineral in the skarn zone and their compositions are in the range of Adr(67.2 - 45.9%) Gro(50.1 - 31.8%) Sps(1.8 - 0.3%) and Prp(2.5 - 0.6%). EPMA data indicate a decrease in andradite and increase in the amounts of grossular and pyralspite group from the core to the margin of the garnet minerals. Increasing the substitution of Al by Fe+ 3 from the core to the rim of the garnet crystals indicates an increaseing FO2 during the growth of the garnet crystals. Pyroxene is the second most abundant mineral in the skarn zone and has a more homogeneous composition than garnet. The main pyroxenes of this deposit are in the range of hedenbergite to diopside with the combination of Fs(41.2 - 30.6%) En(26.6 - 9.5%) and Wo(49.3 - 42.8%) which has an average ratio of Fe/(Fe + Mg) in the range of 0.81 to 0.53. Thermobarometry studies indicate the formation of the progressive stage of skarnification at a pressure of 1 to 2 kbar and a temperature less than 600°C, depth of formation is about 5 km and  FO2 is about -16 to -27. The EPMA results of garnets and pyroxenes of skarn zones indicate that their composition is located at the range of Fe-Cu-Au type skarns.
 
Full-Text [PDF 1367 kb]   (606 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994) 211-238. [Doi:10.1016/0040-1951(94)90030-2] [DOI:10.1016/0040-1951(94)90030-2]
2. [2] Deer W. A., Howie R. A., Zussman J., "An introduction to the rock-forming minerals", Mineralogical Society of Great Britain and Ireland (2013). [DOI: https://doi.org/10.1180/DHZ [DOI:10.1180/DHZ]]
3. [3] Ghafari S. T., Yazdi M., Fodazi M., Taghilo A., Movahedi M., "Estimation of the reserve of polymetallic and gold mineralization of the Oshvand skarn, Nahavand (in Persian)", Iran Journal Environmental Geology 17 (2012) 15-27.
4. [4] Movahedi M., Yazdi M., Behzadi M., "Mineralogy and skarn zonation in Cu-Au-Fe deposit of Oshvand, Nahavand", 12th National Congress of Geology, Payame Noor University, Qazvin, Iran (2020). (in Persian with English abstract)
5. [5] Movahedi M., Yazdi M., Behzadi M., "Mineralogy, geometry, and geochemistry of copper, gold, and Iron Oshvand Skarn deposits, Nahavand, Iran", 27th National Symposium of Crystallography and Mineralogy of Iran (2020).
6. [6] Movahedi M., Yazdi M., Behzadi M., "Mineralogy of alteration zones in Oshvand copper, gold, and iron skarn ore deposit based on remote sensing data", 27th National Symposium of Crystallography and Mineralogy of Iran (2020).
7. [7] Ahadnejad V., Valizadeh M. V., Deevsalar R., Rezaei-Kahkhaei M., "Age and geotectonic position of the Malayer granitoids: Implication for plutonism in the Sanandaj-Sirjan zone, W Iran", Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 261 (2011) 61-75. [DOI: 10.1127/0077-7749/2011/0149]. [DOI:10.1127/0077-7749/2011/0149]
8. [8] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American Mineralogist Journal 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
9. [9] Hochella, M., "Aspects of structure and rheology of aluminosilicate melts." (1982): 3160-3160.
10. [10] Liou, J. G., "Synthesis and stability relations of epidote, Ca2Al2FeSi3O12 (OH)." Journal of Petrology 14.3 (1973): 381-413. [DOI:10.1093/petrology/14.3.381]
11. [11] Shahabpour J., "Economic geology", Kerman: Bahonar University (2006) 500.
12. [12] Dziggel A., Wulff K., Kolb J., Meyer F. M., Lahaye Y., "Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: evidence from the Navachab gold deposit Namibia", Journal of Chemical Geology 262 (2009) 262-276. [DOI: 10.1016/j.chemgeo.2009.01.027] [DOI:10.1016/j.chemgeo.2009.01.027]
13. [13] Lindsley D. H., "Pyroxene thermometry", American Mineralogist 68 (1983) 477-493.
14. [14] Ellis, D. J., and D. H. Green. "An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria." Contributions to Mineralogy and Petrology 71.1 (1979): 13-22. [DOI:10.1007/BF00371878]
15. [15] Ai, Y., "A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer." Contributions to Mineralogy and Petrology 115.4 (1994): 467-473. [DOI:10.1007/BF00320979]
16. [16] Ganguly, J., "Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient." Geochimica et Cosmochimica Acta 43.7 (1979): 1021-1029. [DOI:10.1016/0016-7037(79)90091-7]
17. [17] Ganguly, J., Weiji, C., and Massimiliano, T., "Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications." Contributions to Mineralogy and Petrology 126.1 (1996): 137-151. [DOI:10.1007/s004100050240]
18. [18] Nakamura, D. "A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set." Journal of Metamorphic Geology 27.7 (2009): 495-508. [DOI:10.1111/j.1525-1314.2009.00828.x]
19. [19] Berman, R. G., L. Ya Aranovich, and D. R. M. Pattison. "Reassessment of the garnet-clinopyroxene Fe− Mg exchange thermometer: II. Thermodynamic analysis." Contributions to Mineralogy and Petrology 119.1 (1995): 30-42. [DOI:10.1007/BF00310715]
20. [20] Meinert, L. D., et al., "Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids." Economic Geology 98.1 (2003): 147-156. [DOI:10.2113/gsecongeo.98.1.147]
21. [21] Kwak, T. A. P. "Fluid inclusions in skarns (carbonate replacement deposits)." Journal of Metamorphic Geology 4.4 (1986): 363-384. [DOI:10.1111/j.1525-1314.1986.tb00358.x]
22. [22] Einaudi, M. T., and MEINERT, LD., "Skarn deposits." (1981). [DOI:10.5382/AV75.11]
23. [23] Meinert L. D., "Compositional variation of igneous rocks associated with skarn deposits, Chemical evidence for genetic connection between petrogenesis and mineralization, in Thompson, J.F.H., ed, Magmas, fluids, and ore deposits, Min", Assoc Can Short Course Series 23 (1995) 401- 418.
24. [24] Einaudi M. T., Burt D. M., "Introduction; terminology, classification, and composition of skarn deposits", Economic geology 77 (1982) 745-754. [DOI: 10.29252/ijcm.26.1.229] [DOI:10.29252/ijcm.26.1.229]
25. [25] Zuo P., Liu X., Hao J., Wang Y., Zhao R., Ge S., "Chemical compositions of garnet and clinopyroxene and their genetic significances in Yemaquan skarn iron-copper-zinc deposit, Qimantagh, eastern Kunlun", Journal of Geochemical Exploration 158 (2015) 143-154. [DOI: 10.1016/j.gexplo.2015.07.011] [DOI:10.1016/j.gexplo.2015.07.011]
26. [26] Ahmadnejad F., Zamanian H., Sameti M., "Geochemistry and economic potential of the Samen Granitoid Intrusion, Northwestern Iran: Implications for skarn mineralization", Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry 194 (2017) 175-203. [DOI: 10.1127/njma/2017/0031] [DOI:10.1127/njma/2017/0031]
27. [27] Hwang S. L., Shen P., Yui T. F., Chu H. T., "On the mechanism of resorption zoning in metamorphic garnet", Journal of Metamorphic Geology 21 (2003) 761-769. [‏DOI: 10.1046/j.1525-1314.2003. 00477.x] [DOI:10.1046/j.1525-1314.2003.00477.x]
28. [28] Baghban S., Hosseinzadeh M. R., Moayyed M., Mokhtari M. A. A., Gregory D., "Geology, mineral chemistry and formation conditions of calc-silicate minerals of Astamal Fe-LREE distal skarn deposit, Eastern Azarbaijan Province, NW Iran", Ore Geology Reviews 68 (2015) 79-96. [DOI: 10.1016/j.oregeorev.2014.12.016] [DOI:10.1016/j.oregeorev.2014.12.016]
29. [29] Dingwell D. B., Brearley M., "Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada", Contributions to Mineralogy and Petrology 90 (1985) 29-35.‏ [DOI:10.1007/BF00373038]
30. [30] Logan M. A. V., "Mineralogy and geochemistry of the Gualilán skarn deposit in the Precordillera of western Argentina", Ore Geology Reviews 17 (2000) 113-138. ‏ [DOI: 10.1016/S0169-1368(00)00009-3] [DOI:10.1016/S0169-1368(00)00009-3]
31. [31] Somarin A. K., "Garnet composition as an indicator of Cu mineralization: evidence from skarn deposits of NW Iran", Journal of Geochemical exploration 81 (2004) 47-57. ‏ [DOI: 10.1016/S0375-6742(03)00212-7] [DOI:10.1016/S0375-6742(03)00212-7]
32. [32] Liou J. G., "Stability relations of andradite-quartz in the system Ca-Fe-Si-OH", American Mineralogist: Journal of Earth and Planetary Materials 59 (1974) 1016-1025.
33. [33] Burt D. M., "Mineralogy and geochemistry of Ca-Fe-Si skarn deposits", (Doctoral dissertation, Harvard University) (1972).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb