Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 45-58 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Souri M, Ahmadikhalaji A, Ebrahimi M, Esmaeili R. Petrology and geochemistry of the amphibolites from Makran accretionary complex, Southeast of Iran. www.ijcm.ir 2023; 31 (1) :45-58
URL: http://ijcm.ir/article-1-1708-en.html
1- University of Lorestan
2- University of Zanjan
Abstract:   (668 Views)
   Makran amphibolites are exposed in different locations in the northern Makran ophiolitic belt. Based on lithological studies and mineral assemblages in these rocks, they are containing ordinary amphibolite (oriented and massive), garnet-pyroxene amphibolite, epidote-garnet amphibolite and marble. The minerals that made up ordinary amphibolites (oriented and massive) include amphibole, plagioclase, zircon apatite, quartz and sphene. In addition to these minerals, garnet and pyroxene are found in garnet-pyroxene amphibolites. In addition, epidote, garnet and pyroxene are found in epidote-garnet amphibolites. Also, marbles are containing calcite with a distinct cleavage, quartz and amphibole. Geochemistry of amphibolites shows that these amphibolites are of igneous origin with basaltic protolith that originate from an enriched mantle. Amphibolite samples of the region have relatively similar composition based on the diagrams of changes of normalized rare earth elements to chondrite and N-MORB and are also similar to mid-oceanic ridge basalts (MORB) as well as within plate volcanic zone (WPVZ) basalts in terms of geochemical properties.
Full-Text [PDF 3376 kb]   (212 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Coutinho J., Kräutner H., Sassi F., Schmid R., Sen S., "Amphibolite and Granulite", Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version, (2007), 1-12.
2. [2] Matthes S., Kramer A., " Die Amphibolite und Hornblendegneise im mittleren Vor Spessart und ihre petrogenetische Stellung", Neues Jahrbuch für Mineralogie (Journal of Mineralogy and Geochemistry), 88, (1955) 225-272.
3. [3] Oen I.S., "Hornblendic rocks and their polymetamorphic derivatives in area NW of Ivigtut, south Greenland. Meddedel", Groenland, 6, (1962) 169-184.
4. [4] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks (6th edn) ", Springer Verlag: Berlin, (1994), 318p. [DOI:10.1007/978-3-662-03000-4]
5. [5] Pearce J. A., "Statistical Analysis of Major Element Patterns in Basalts", Journal of Petrology, 17 (1), (1976) 15-43. [DOI:10.1093/petrology/17.1.15]
6. [6] Farahat E. S., "Geotectonic significance of Neoproterozoic amphibolites from the Central Eastern Desert of Egypt: A possible dismembered sub-ophiolitic metamorphic sole", Lithos, 125 (1), (2011) 781-794. [DOI:10.1016/j.lithos.2011.04.009]
7. [7] Mccall G.J.H., "A summary of the geology of the Iranian Makran: Tectonic and Climatic Evolution of the Arabian Sea Region",Geological Society of London, 195, (2002) 147-204. [DOI:10.1144/GSL.SP.2002.195.01.10]
8. [8] Esmaeili R., Ao, S., Shafaii Moghadam H., Zhang Z., Griffin W. L., Ebrahimi M., Bhandari S., "Amphibolites from makran accretionary complex record Permian-Triassic Neo-Tethyan evolution", International Geology Review, (2021) 1-17. [DOI:10.1080/00206814.2021.1946663]
9. [9] Dolati A., "Stratigraphy, structural geology and low-temperature termochronology across the Makran accretionary wedge in Iran", Diss ETH, No. 19151, (2010) 215p.
10. [10] Moghadam H.S., Stern R.J., " Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites", Journal of Asian Earth Sciences, 100, (2015) 31-59. [DOI:10.1016/j.jseaes.2014.12.016]
11. [11] McCall G., Kidd R., "The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present", Geological Society, London, Special Publications, 10(1), (1982) 387-397. [DOI:10.1144/GSL.SP.1982.010.01.26]
12. [12] Esmaeili R., Xiao W., Griffin W. L., Moghadam H. S., Zhang Z., Ebrahimi M., Bhandari S., "Reconstructing the source and growth of the Makran accretionary complex: Constraints from detrital zircon U-Pb geochronology", Tectonics, 39(2), (2020), e2019TC005963. [DOI:10.1029/2019TC005963]
13. [13] Burg J.P., "Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation", Earth-Science Reviews, 185, (2018) 1210-1231. [DOI:10.1016/j.earscirev.2018.09.011]
14. [14] McCall G., "A summary of the geology of the Iranian Makran", Geological Society, London, Special Publications, 195(1), (2002) 147-204. [DOI:10.1144/GSL.SP.2002.195.01.10]
15. [15] Hunziker D., "Magmatic and Metamorphic History of the North Makran Ophiolites and Blueschists (SE Iran): "Influence of Fe3+/Fe2+ Ratios in Blueschist Facies Minerals on Geothermobarometric Calculations", ETH Zurich, Switzerland, Zürich (ETH-Zürich 364 pp), (2014).
16. [16] McCall G.J.H., "The geotectonic history of the Makran and adjacent areas of southern Iran". Journal of Asian Earth Sciences, 15 (6), (1997) 517-531. [DOI:10.1016/S0743-9547(97)00032-9]
17. [17] McCall G., Kidd R., "The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present", Geological Society, London, Special Publications, 10(1), (1982) 387-397. [DOI:10.1144/GSL.SP.1982.010.01.26]
18. [18] McCall G.J.H., "Mélangesof the Makran, southeastern Iran", In: McCall, G.J.H. (Ed.), Ophiolitic and Related Mélanges, Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania, (1983), 292-299.
19. [19] Kretz R., "Symbols for rock-forming minerals", American Mineralogist, 68, (1983) 277-279.
20. [20] Garrels R.M., Mckenzie F.T., "Evolution of Sedimentary Rocks", W.W, Norton New York, NY (1971).
21. [21] Leake B. E., "The chemical distinction between ortho and para-amphibolites", Journal of Petrology, 5, (1964) 238-254. [DOI:10.1093/petrology/5.2.238]
22. [22] Misra S.N., "Chemical distinction of high grade ortho- and para-metabasite", Norsk Geologisk Tidsskrift, 51, (1971) 311-316.
23. [23] Winter C., "An Introduction to Igneous and Metamorphic Petrology", Prentice Hall, 697 pp, (2001).
24. [24] Middlemost E. A. K., "Naming materials in the magma/igneous rock system", Earth Science Reviews, 37, (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
25. [25] Pearce J. A., "A users guide to basalt discrimination diagrams. In: Wyman, D. A. (eds) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration", Geological Association of Canada, Short Course Notes, 12, (1996) 79-113.
26. [26] Wilson M., "Igneous Petrogenesis: A global tectonic approach", Springer, Dordrecht, (1989), 466p. [DOI:10.1007/978-1-4020-6788-4]
27. [27] Nakamura N., "Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites", Geochimica et Cosmochimica Acta, 38, (1974) 757e775. [DOI:10.1016/0016-7037(74)90149-5]
28. [28] Abate B., Koeberl K., Buchanan P. C., Korner W., "Petrography and geochemistry of basaltic and rhyodacitic rocks from Lake Tana and the Gimjabet-Kosober areas (North Center Ethiopia)", Journal of African Earth Science, 26, (1998) 119-134. [DOI:10.1016/S0899-5362(97)00140-1]
29. [29] Ying J., Zhang H., Sun M., Tang Y., Zhou X., Liu X., "Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, Western North China Craton: implication for magma mixing of different Source in anextensional regime", Lithos, 01566, (2007) 1-22. [DOI:10.1016/j.lithos.2007.02.001]
30. [30] Rolinson H., "Using geochemical data: evaluation, presentation, interpretation", Longman, (1993).
31. [31] Sun S., McDonough W., "Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes", Geological society, London, Special Publications, 42, (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
32. [32] Barrett T.J., MacLean W.H., "Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems, in Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Environments", (eds.) C.T. Barrie and M.D. Hannington; Society of Economic Geologists, Reviews in Economic Geology, 8, (1999) 101- 131.
33. [33] Pearce T.H., Groman B.E., Birkett T.C., "The TiO2-K2O-P2O5 diagram: a method of discriminating between oceanic and non-oceanic basalts", Earth and Planetary Science Letters, 24, (1975) 419-426. [DOI:10.1016/0012-821X(75)90149-1]
34. [34] Pearce J.A., Cann J.R., "Tectonic setting of basic volcanic rocks determined using trace tectonic setting in VMS environments", Economic Geology, 97(3), (2002) 629- 642. [DOI:10.2113/97.3.629]
35. [35] Perfit M.R., Gust D.A., Bence A.E., Arculus R. J., Taylor S. R., "Chemical characteristics of island arc basalts: Implications for mantle sources", Chemical Geology, 30, (1980) 227-256. [DOI:10.1016/0009-2541(80)90107-2]
36. [36] Schandi E.S., Gorton M.P., "Application of high; eld strength elements to discriminate tectonic settings in VMS environments", Economic Geology, 97(3), (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
37. [37] Pearce J.A. "Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust", Lithos, 1001-4, (2008) 14-48. [DOI:10.1016/j.lithos.2007.06.016]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb