Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 829-844 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi, Abedini, Bagheri, Calagari. Mineralogy and the lanthanide elements geochemistry of the Shotorkhosb kaolin deposit, southeast of Torbat-e-Heydarieh , NE Iran. www.ijcm.ir 2020; 28 (4) :829-844
URL: http://ijcm.ir/article-1-1550-en.html
Abstract:   (1511 Views)
The Shotorkhosb kaolin deposit is located about 7 km southeast of Torbat-e-Heydariyeh, Khorasan Razavi Province, northeast Iran. This deposit is a part of the Khaf-Kashmar-Bardaskan metallogenic zone. Field observations and laboratory studies indicate that this deposit is a product of alteration of Eocene andesitic rocks.  In this study, different analytical techniques, such as XRD, SEM-EDS, FE-SEM, DTA and TGA, were used to evaluate the characterization of the studied kaolin samples. Based on mineralogical examinations, kaolinite, illite, halloysite, montmorillonite, quartz, alunite, jarosite, natrojarosite, albite, muscovite, hematite, pyrite, gypsum, rutile, galena and barite are the most mineral phases in this deposit. Halloysite is a type 7 angstrom in this deposit and can be seen in the form of tubes and plate. Alunites have pseducubic and rhombuhedral forms. The distribution pattern of rare earth elements (REEs) and investigation of lanthanide ratios imply the effective role of pH and temperature changes in the development of this deposit. The correlation coefficients between elements reveal the effective role of clays, hematite, rutile and phosphorus-bearing minerals in the concentration of lanthanides. The decrease of Ce anomaly in the kaolin samples relative to the andesitic precursor rock  implies a decrease in oxygen fugacity during the development of kaolinitization processes in the Shotorkhosb deposit.
Full-Text [PDF 5021 kb]   (479 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Ghorbani M., "The Economic Geology of Iran: Mineral Deposits and Natural Resources", Springer (2013) 1-569. [DOI:10.1007/978-94-007-5625-0_1]
2. [2] Ghodsi M. R., Boomeri M., Bagheri S., Ishiyama D., Corfu F., "Geochemistry, zircon U-Pb age, and tectonic constraints on the Bazman granitoid complex, southeast Iran", Turkish Journal of Earth Sciences 25 (2016) 311-340. [DOI:10.3906/yer-1509-3]
3. [3] Jozanikohan G., Sahabi F., Norouzi G. H., Memarian H., "Evaluation of clay content of Shurijeh reservoir formation using core analysis in Gonbadli gas field, Eastern Kopet-Dagh Basin", Scientific Quarterly Journal, Geosciences 24 (2015) 239-252.
4. [4] Boroozinyat B., Malekzadeh Shafaroudi A., Haidarian Shahri M. R., "Mineralogy, geochemistry, and fluid inclusion studies in Zaveh copper mineralization occurrence, southeast of Torbat-E-Hydarie", Iranian Journal of Crystallography and Mineralogy 27 (2019) 3-18. [DOI:10.29252/ijcm.27.1.3]
5. [5] Whitney D. L., Evans B. W., "Abbreviations for names of rock forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
6. [6] Fanning D. S., Rabenhorst M. C., Leopold M., Wagner D. P., "Oxidation state of iron in glauconite from oxidized and reduced zones of soil-geologic columns", Clays and Clay Minerals 37 (1989) 59-64. [DOI:10.1346/CCMN.1989.0370107]
7. [7] Raven M., Self P., "Identification and quantification of clays", Cambridge University Press (2017)142-204. [DOI:10.1017/9781316661888.006]
8. [8] Brindley G. W., Brown G., "Quantitative X-ray analysis of clays in crystal structures of clay minerals and their X-ray identification", Mineralogical Society Monograph 5 (1980) 411-438. [DOI:10.1180/mono-5]
9. [9] Hillier S., Rayan P. C., "Identification of halloysite (7A°) by ethylene glycol solvation: The Mac Ewan effect", Clay Minerals 37 (2002) 395-404. [DOI:10.1180/0009855023730054]
10. [10] Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B.,"Halloysite clay minerals: A review", Clay Minerals 40 (2005) 383-426. [DOI:10.1180/0009855054040180]
11. [11] Lagaly G., "Characterization of clays by organic compounds", Clay Minerals 16 (1981) 1-21. [DOI:10.1180/claymin.1981.016.1.01]
12. [12] Kohyama N., Fukushima K., Fukami A., "Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell", Clays and Clay Minerals 26 (1978) 25-40. [DOI:10.1346/CCMN.1978.0260103]
13. [13] Churchman G. J., Whitton J. S., Claridge G. G. C., "Intercalation method using formamide for differentiating halloysite from kaolinite", Clays and Clay Minerals 32 (1984) 241-248. [DOI:10.1346/CCMN.1984.0320401]
14. [14] Noro H.,"Hexagonal platy halloysite in an altered tuff bed, Komaki city, Aichi Prefecture, Central Japan", Clay minerals 21( 1986) 401-415. [DOI:10.1180/claymin.1986.021.3.11]
15. [15] Tazaki K., "Analytical electron microscopic studies of halloysite formation processes-morphology and composition of halloysite", Proceeding International Clay Conference of the Bologna, Pavia (1982) 573-58.
16. [16] Brown M., Gallagher P., "Handbook of Thermal Analysis and Calorimetry, Volume 2. Applications to Inorganic and Miscellaneous Materials", Elsevier Science (2003) 1-492.
17. [17] Ece O. I., Nakagawa Z., Schroeder P. A., "Alteration of volcanic rocks and genesis of kaolin deposits in the Şile region, northern Istanbul, Turkey. I. Clay mineralogy", Clays and Clay Minerals 51 (2003) 675-688. [DOI:10.1346/CCMN.2003.0510610]
18. [18] Abedini A., " The mineralogical and geochemical control on the distribution and mobilization of trace and rare earth elements during development of argillic alteration zone: A case study from northeast of Kharvana, NW Iran", Iranian Journal of Crystallography and Mineralogy 25 (2017) 353-366.
19. [19] Nesbitt H. W., Markovics G., "Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments", Geochimica et Cosmochimica Acta 61 (1997) 1653-1670. [DOI:10.1016/S0016-7037(97)00031-8]
20. [20] Taylor Y., McLennan S. M., "The continental crust: Its composition and evolution" 1st ed. Oxford, UK: Blackwell.
21. [21] Christidis G. E, "Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the Islands of Milos and Kimolos, Aegean, Greece", Clays and Clay Minerals 46 (1998) 379-399. [DOI:10.1346/CCMN.1998.0460403]
22. [22] Siahcheshm K., Abedini A., Shahsavari M, "Mineralogy and geochemistry of REEs in Anbagh alterd sketch, east of Ahar, NW Iran", Iranian Journal of Crystallography and Mineralogy 24 (2017) 703-714.
23. [23] Abedini A., Rezari Azizi M., "The Hizeh-Jan kaolin deposit of NW Iran: the tetrad effect in REE distribution patterns" Acta Geologica Sinica-English Edition 93 (2019) 74-87. [DOI:10.1111/1755-6724.13765]
24. [24] Patino L. C., Velbel M ., Price J. R., Wade J, "Trace element mobility during spheroidal weathering of basalts and andesite in Hawaii and Guatemala", Chemical Geology 202 (2003) 343-364. [DOI:10.1016/j.chemgeo.2003.01.002]
25. [25] Braun J. J., Pagel M., Muller J. P., Bilong P., Michard A., Guillet B., "Cerium anomalies in lateritic profiles", Geochimica et Cosmochimica Acta 54 (1990) 781-795. [DOI:10.1016/0016-7037(90)90373-S]
26. [26] Calagari A. A., Kangarani Farahani F., Abedini A., "Geochemical characteristics of a laterite: the Jurassic Zan deposit, Iran", Acta Geodynamica et Geomaterialia 12 (2015) 67-77. [DOI:10.13168/AGG.2015.0001]
27. [27] Burnham A. D., Berry A. J., "The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts", Chemical Geology 366 (2014) 52-60. [DOI:10.1016/j.chemgeo.2013.12.015]
28. [28] Mondillo N., Boni M., Balassone G., Spoleto S., Stellato F., Marino A., Santoro L., Spratt J., "Rare earth elements (REE)-minerals in the Silius fluorite vein system (Sardinia, Italy)", Ore Geology Reviews 74 (2106) 211-224. [DOI:10.1016/j.oregeorev.2015.11.016]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb