Volume 27, Issue 4 (12-2019)                   www.ijcm.ir 2019, 27(4): 941-958 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare Shooli M, Tahmasbi Z, Saki A, Ahmadi Khalaji A. The study of changing Rare Earth and Trace Elements to determine the origin of Borujerd migmatites. www.ijcm.ir 2019; 27 (4) :941-958
URL: http://ijcm.ir/article-1-1383-en.html
Abstract:   (2934 Views)
Migmatites have formed an important part of high-grade metamorphism in the Boroujerd area aureole. Leucosome of migmatites are mainly composed of plagioclase, quartz, potassium feldspar and biotite. Migmatites mesosome are mainly composed of plagioclase, quartz, potassium feldspar, biotite, garnet, andalusite, sillimanite, spinel, corundum and cordierite. Geochemical studies of migmatites show that composition of old meta-sedimentary rocks (source of migmatites) are shale and pelitic. Discrimination diagrams indicate an active continental margin tectonic setting for the source of Boroujerd migmatites. Sources of Boroujerd migmatites are intermediate and felsic igneous rocks (andesite –dasite and ryodacite) based on geochemistry of immobile elements. Field observations, microscope and geochemical data show that the migmatites are composed of the metaplites partial melting. Decreasing and increasing trace and rare earth elements in the metaelites and migmatites were resulted of stability or instability in the metamorphic minerals during peak of the metamorphism, which caused migmatization. Based on the partition coefficients of elements in different minerals, light rare earth elements and high rare earth elements (LREE, HREE) were mostly controlled by garnet and apatite (but not a lot) during the partial melting of the metaelites. Related to the LREE, heavy rare earth elements (HREE) and Y were controlled by garnet. Elements with high field strength (HFSE), such as Zr, Nb, Ta and Th were controlled and distributed by biotite and ilmenite. Large ionic lithophile elements (LILE) such as Sr, Ba and Rb showed that plagioclase and biotite are the main minerals that control and distribution the elements. Based on the P–T pseudosection, Crd+Kfs+Spl+Crn minerals paragenesis, the maximum temperature and pressure for metamorphism estimated approximately 750 ° C and 2.7 kbar respectively. Therefore, the intrusion of mafic intrusions in the metapelite caused the formation of pelitic hornfels and partial melting derived migmatites.
Full-Text [PDF 132 kb]   (915 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Ashworth J.R., (Ed) "Migmatites", Blackie, Glasgow, (1985) 302 p. [DOI:10.1007/978-1-4613-2347-1]
2. [2] Mohajjel M., "Structure and tectonic evolution of Paleozoic-Mesozoic rocks, Sanandaj-Sirjan zone, Western Iran", Ph.D. Thesis, University of Wollongong, Australia (1997).
3. [3] Stoklin J., "Structural histiry and tectonics of Iran, A review", American Association Petroleum Geologists 52 (1968)1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
4. [4] Ahmadi-Khalaji A., Esmaeily D., Valizadeh M.V., Rahimpour-Bonab H., "Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sansandaj-Sirjan Zone, Western Iran", Journal of Asian Earth Sciences 29 (2007) 859-877. [DOI:10.1016/j.jseaes.2006.06.005]
5. [5] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., "U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran", Journal of Asian Earth Sciences, 41 (2011) 238-249. [DOI:10.1016/j.jseaes.2011.03.006]
6. [6] Masoudi F., Yardley, B.W.D., Cliff R.A., "Rb-Sr geochronology of pematites, plutonic rocks and a hornfels in the region southwest of Arak, Iran", Islamic Republic of Iran Journal of Sciences 13 (2002) 249-254.
7. [7] Masoudi f., "Contact metamorphism and pegmatite development in the region S.W of Arak iran", Ph.D. thesis, University of Leed, England (1997) 321p.
8. [8] Spear F.S., Kohn M.J., Cheney J.T., "P-T paths from anatectic pelites", Contributions to Mineralogy and Petrology 134 (1999) 17-32. [DOI:10.1007/s004100050466]
9. [9] Azor A., Ballevere M., "Low- pressure metamorphism in the Sierra Albarrana Area (Variscan Belt, Iberian Massif)", Journal of Petrology 38 (1997) 35- 64. [DOI:10.1093/petroj/38.1.35]
10. [10] Kretz R., "Symbols for rock forming minerals", American Mineralogist 68(1983) 277-279.
11. [11] Yardley B.W.D., "An introduction to Metamorphic Petrology", Longman, (1991) 248p.
12. [12] Winkler H.G.F., "Petrogenesis of Metamorphic Rocks", 4nd Edition, Springer-Verlag, New York (1976). [DOI:10.1007/978-3-662-22283-6]
13. [13] Herron M.M., "Geochemical classification of terrigenous sands and shales from core or log data", Journal of Sedimentary Petrology 58 (1988) 820-829. [DOI:10.1306/212F8E77-2B24-11D7-8648000102C1865D]
14. [14] Werner C.D., "Saxonian granulites-igneous or lithogenous, A contribution to the geochemical diagnosis of the original rocks in high metamorphic complexes", Zentralinstitut für Isotopen-Mitteilungen, 133 (1987) 221-250.
15. [15] Hayashi K., Fujisawa H., Holland H.D., "Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada", Geochimica et Cosmochimica Acta 61 (1997) 4115-4137. [DOI:10.1016/S0016-7037(97)00214-7]
16. [16] Floyd P.A., Winchester J.A., Park R.G., "Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Lock Marie Group of Gairlock, Scotland", Precambrian Research 45 (1989) 203-214. [DOI:10.1016/0301-9268(89)90040-5]
17. [17] Hallberg J.A., "A geochemical aid to igneous rock identification in deeply weathered terrain", Journal of Geology Exploration 20 (1984) 1-8. [DOI:10.1016/0375-6742(84)90085-2]
18. [18] Winchester J.A., Floyd P.A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 325-343. [DOI:10.1016/0009-2541(77)90057-2]
19. [19] Bhatia M.R., "Plate tectonics and geochemical composition of sandstones", Journal of Geology 92 (1983) 181-193.
20. [20] Roser B.P., Korsch R.J., "Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio", Journal of Geology 94 (1986) 635-650. [DOI:10.1086/629071]
21. [21] Maynard J.B., Valloni R., Yu, H., "Composition of modern deep sea sands from arc-related basin", Geology Society of London, Special Publication 10 (1982) 551-561. [DOI:10.1144/GSL.SP.1982.010.01.36]
22. [22] Toulkeridis T., Clauer N., Kroner A., Reimer T., Todt W., "Characterization, provenance, and tectonic setting of Fig Tree graywackes from the Archean Barberton Greenstone Belt, South Africa", Sedimentary Geology 124 (1999) 113-129. [DOI:10.1016/S0037-0738(98)00123-7]
23. [23] Pearce J.A., Norry M.J., "Petrogenetic implication of Ti, Zr, Y and Nb variations in volcanic rocks", Contributions to Mineralogy and Petrology 69 (1979) 33-51. [DOI:10.1007/BF00375192]
24. [24] Garcia D., Fonteilles M., Moutte J., "Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites", Journal of Geologym 102 (1994) 411-322. [DOI:10.1086/629683]
25. [25] Shand S.J., "Eruptive rocks: their genesis, composition, classification and their relation to ore-deposits, with a chapter on meteorites", Thomas Murby and Co., London, 1943.
26. [26] Clemens J.D., "S-type granitic magmas- petrogenetic issues, models and evidence", Earth-Science Reviews, 61 (2003) 1-18. [DOI:10.1016/S0012-8252(02)00107-1]
27. [27] Droop G.T.R., Moazzen M., "Contact metamorphism and partial melting of Dalradian pelites and semipelites in the southern sector of the Etive aureole", Scottish Journal of Geology, 43(2007) 155-179. [DOI:10.1144/sjg43020155]
28. [28] Harris N.B.W., Inger S., "Trace element modelling of pelite-derived granites", Contributions to Mineralogy and Petrology, 110 (1992) 46-56. [DOI:10.1007/BF00310881]
29. [29] Nehring F., Foley S.F., Holtta P., "Trace element partitioning in the granulite facies", Contributions to Mineralogy and Petrology, 159(2010) 493-519. [DOI:10.1007/s00410-009-0437-y]
30. [30] Ayres M., Harris N., "REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints fromHimalayan leucogranites", Chemical Geology, 139(1997) 249-269. [DOI:10.1016/S0009-2541(97)00038-7]
31. [31] Kalsbeek F., Jepsen H.F., Jones A., "Geochemistry and petrogenesis of S-type granite in East Greenland Caledonides", Lithos, 57(2001) 91-109. [DOI:10.1016/S0024-4937(01)00038-X]
32. [32] Kriegsman L.M., "Partial melting, partial melt extraction and partial back reaction in anatectic migmatites", Lithos, 56 (2001) 75-96. [DOI:10.1016/S0024-4937(00)00060-8]
33. [33] Sawyer E.W., Barnes S.J., "Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada", Journal of Metamorphic Geology, 6 (1988) 437-450. [DOI:10.1111/j.1525-1314.1988.tb00432.x]
34. [34] Whitney D.L., Irving A.J., "Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes", Lithos, 32 (1994) 173-192. [DOI:10.1016/0024-4937(94)90038-8]
35. [35] Zuluaga C.A., Amaya S., Uruena C., Bernet M., "Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America)", Lithos, 274-275 (2017) 123-146. [DOI:10.1016/j.lithos.2016.12.036]
36. [36] Maniar P.D., Piccoli P.M., "Tectonic discrimination of granites", Geological Society of America Bulletin, 101 (1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
37. [37] Boynton W.V., "Cosmochemistry of the rare earth elements, meteorite studies. In: Rare earth element geochemistry, Henderson", P.(Editors), Elsevier Sci. Publ. co., Amsterdam, p:63-114, 1984. [DOI:10.1016/B978-0-444-42148-7.50008-3]
38. [38] Xu Cheng., Huang Z., Qi L., Fu P., Liu C., Li E., Guan T., "Geochemistry of cretaceous granites from Mianning in the Panxi region,Sichuan Province southweast china:Implications for their generation", Journal of Asian Earth Sciencesm, 29 (2007) 737-750. [DOI:10.1016/j.jseaes.2006.03.013]
39. [39] Rollinson H.R., "Using geochemical data: evaluation, presentation, interpretation, Longman Scientific and Technical", John Wiley and Sons, London, UK (1993) 352 p.
40. [40] McKenzie D., O'Nions R.K., "Partial melt distributions from inversion of rare Earth element concentrations", Journal of Petrology 32 (1991) 1021-1091. [DOI:10.1093/petrology/32.5.1021]
41. [41] Foley S.F., Jackson S.E., Fryer B.J., Greenough J.D., Jenner, G.A., "Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS", Geochimica et Cosmochi- mica Acta 60 (1996) 629-638. [DOI:10.1016/0016-7037(95)00422-X]
42. [42] Villemant B., "Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization enrichment", Contributions to Mineralogy and Petrology 98 (1988) 169-183. [DOI:10.1007/BF00402110]
43. [43] Nash W.P., Crecraft H.R., "Partition coefficients for trace elements in silicic melts", Geochimca et Cosmochimca Acta, 49 (1985) 2309-2322. [DOI:10.1016/0016-7037(85)90231-5]
44. [44] Fujimaki H., Tatsumoto M., Aoki K.I., "Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses", Journal of Geophysical Research 89 (1984) 662-672. [DOI:10.1029/JB089iS02p0B662]
45. [45] Philpotts J.A., Schnetzler C.C., "Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis", Geochimica et Cosmochimica Acta 34 (1970) 307-322. [DOI:10.1016/0016-7037(70)90108-0]
46. [46] Nielsen R.L., Gallahan W.E., Newberger F., "Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite", Contributions to Mineralogy and Petrology 110 (1992) 488-499. [DOI:10.1007/BF00344083]
47. [47] Zack T., Brumm R., "Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxene. In: Gurney J.J., Gurney J.L., Pascoe M.D., Richardson S.H., (Eds.) 7th International Kimberlite Conference", Red Roof Design, Cape Town (1998) 986-988.
48. [48] Shaw D.M., "Trace element fractionation during anatexis", Geochimica et Cosmochimica Acta 34 (1970) 237-243. [DOI:10.1016/0016-7037(70)90009-8]
49. [49] Rudnick R.L., "Making continental crust", Nature, 378 (1995) 571-578. [DOI:10.1038/378571a0]
50. [50] Best M.G., "Igneous and Metamorphic Petrology", Blackwell (2003) 730 p.
51. [51] Gill R., "2010- Igneous Rocks and Processes: A Practical Guide", John Wiley & Sons. 428 p.
52. [52] Fazlnia A.N., "Changing Rare Earth and Trace Elements during the Migmatization of the Qori Metabasic Rocks, Neyriz, SW Iran", Scientific Quarterly Journal, GEOSCIENCES 22 (2013) 161-170.
53. [53] De Capitani C., Petrakakis K., "The computation of equilibrium assemblage diagrams with Theriak/ Domino software", American mineralogist 95 (2010) 1006-1016. [DOI:10.2138/am.2010.3354]
54. [54] Holland T.J.B., Powell R., "An internally consistent thermodynamic data set for phases of petrological interest", J Metamorph Geol 16 (1998) 309-343. [DOI:10.1111/j.1525-1314.1998.00140.x]
55. [55] White R.W., Powell R., Holland T.J.B., "Progress relating to calculation of partial melting equilibria for metapelites", J Metamorph Geol 25 (2007) 511-527. [DOI:10.1111/j.1525-1314.2007.00711.x]
56. [56] Mahar E.M., Baker J.M., Powell R., Holland T.J.B., Howell N., "The effect of Mn on mineral stability in metapelites", Journal of Metamorphic Geology, 15 (1997) 223-238. [DOI:10.1111/j.1525-1314.1997.00011.x]
57. [57] White R.W., Pomroy N.E., Powell R., "An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia", J Metamorph Geol 23 (2005) 579-602. [DOI:10.1111/j.1525-1314.2005.00597.x]
58. [58] White R.W., Powell R., "Melt loss and the preservation of granulite facies mineral assemblages", Journal of Metamorphic Geology 20 (2002) 621-632. [DOI:10.1046/j.1525-1314.2002.00206_20_7.x]
59. [59] Coggon R., Holland T.J.B., "Mixing properties of phengitic micas and revised garnet-phengite thermobarometers", J Metamorph Geol 20 (2002) 683-696. [DOI:10.1046/j.1525-1314.2002.00395.x]
60. [60] Holland T., Powell R., "Activity-compositions relations for phases in petrological calculations: An asymetric multicomponent formulation", Contrib Mineral Petrol, 145 (2003) 492-501. [DOI:10.1007/s00410-003-0464-z]
61. [61] Deevsalar R., Shinjo R., Ghaderi M., Murata M., Hoskin P.W.O., Oshiro S., Wang K.L., Lee H.Y., Neill I., "Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros", Lithos 284-285 (2017) 588-607. [DOI:10.1016/j.lithos.2017.05.009]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb