Volume 27, Issue 4 (12-2019)                   www.ijcm.ir 2019, 27(4): 755-766 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hafez Darbani M, Abedini A, Aliyari F, Calagari A. Mineral chemistry of magnetite and fluid inclusions studies in the Kuh-Baba iron deposit, south of Hashtroud, NW Iran. www.ijcm.ir 2019; 27 (4) :755-766
URL: http://ijcm.ir/article-1-1361-en.html
1- Urmia University
2- Urmia University of Technology
3- University of Tabriz
Abstract:   (2947 Views)
The Kuh-Baba iron ore deposit is located about 70 km south of Hashtroud, East-Azarbaidjan Province, NW Iran. The deposit is genetically affiliated with intrusive bodies of gabbroic to dioritic composition. The principal host rocks for the Fe mineralization include units of gabbro-norite and pyroxene hornblende gabbro-norite. The widespread alteration zones which are accompanied with Fe-mineralization are actinolitization, chloritization and epidotization. The principal ore mineral is magnetite with subordinate apatite showing massive, vein/veinlet, replacement, brecciated, and disseminated textures. The results of electron probe micro-analysis (EPMA) on 28 points of magnetite crystals show relatively high amounts of elements such as Al, Mn, Ti, and V. The values of components such as TiO2, V2O3, NiO and MgO in massive magnetites are higher than those present in disseminated and veinlet-type magnetites. Studies of primary fluid inclusions in quartz crystals coexisting with magnetite mineralization show that they are mainly liquid-rich 2-phase (L+V) and occasionally monophase-vapor (V). The homogenization temperatures of liquid-rich 2-phase inclusions range from 436ºC to 544ºC (average of 505ºC). Based on temperatures of the last melting point of ice (TM), the obtained average salinity is 15.82 wt% NaCl equ. Considering the measured parameters such as homogenization temperature, salinity, density, and pressure of the fluid inclusion, the depths of magnetite mineralization were estimated to be within the range of 1.3-2.7 (average of 2.3) km (based on the lithostatic pressure). According to the EPMA and fluid inclusion data, the Kuh-Baba iron ores deposit can be classified as a ‘Kiruna-type’ and subtype Iron-Oxide apatite-poor deposits and the origin of magnetite can be conceived as both magmatic and high-temperature hydrothermal.  
Full-Text [PDF 121 kb]   (1013 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Dare S. A. S., Barnes S. J., Beaudoin G., "Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination", Geochimica et Cosmochimica Acta 88 (2012) 27-50. [DOI:10.1016/j.gca.2012.04.032]
2. [2] Dare S. A. S., Barnes S. J., Beaudoin G., Méric J., Boutroy E., Potvin-Doucet C., "Trace elements in magnetite as petrogenetic indicators", Mineralium Deposita 49 (2014) 785-796. [DOI:10.1007/s00126-014-0529-0]
3. [3] Nadoll P., Angerer T., Mauk J. L., French D., Walshe J., "The chemistry of hydrothermal magnetite: A review", Ore Geology Reviews 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
4. [4] Chung D., Zhou M. F., Gao J. F., Chen W. T., "In-situ LA-ICP-MS trace elemental analyses of magnetite: The late Palaeoproterozoic Sokoman iron Formation in the Labrador Trough, Canada", Ore Geology Reviews 65 (2015) 917-928. [DOI:10.1016/j.oregeorev.2014.09.030]
5. [5] Liu P. P., Zhou M. F., Chen W. T., Gao J. F., Huang X. W., "In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan large igneous province, SW China", Ore Geology Reviews 65 (2015) 853-871. [DOI:10.1016/j.oregeorev.2014.09.002]
6. [6] Nadoll P., Mauk J. L., Hayes T. S., Koenig A. E., Box S. E., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States", Economic Geology 107 (2012) 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
7. [7] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
8. [8] Roedder E., "Fluid inclusions", Mineral Soc Am Rev 12 (1984) 644 pp. [DOI:10.1515/9781501508271]
9. [9] Maghfouri S., Movahed Nia M., Hosseinzadeh M., "Geology, mineralization, ore texture, paragenetic sequence of the Kuh-Baba IOA type iron deposit, South of Ghareh-Aghaj, Northwest of Iran", The 34th national and 2nd international Geosciences congress, Iran (2015).
10. [10] Pichab Kansar Company., "Exploration report of Kuh Baba iron ore deposit", Ministry of industry, Mine and Trade, Iran (2012).
11. [11] Alavi M., "Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of America Bulletin 103 (1991) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
12. [12] Aghanabati A., "Major sedimentary and structural units of Iran (map)", Geosciences 7 (1998) 29-30.
13. [13] Babakhani A. R., Ghalamghash J., "1:100000 Geological map of Takht-E-Soleyman", Geological survey of Iran (1996).
14. [14] Kretz, R., "Symbols for rock-forming minerals", American Mineralogist 68 (1983) 277-279.
15. [15] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineralium Deposita 46 (2011) 319-335. [DOI:10.1007/s00126-011-0334-y]
16. [16] Beaudoin G., Dupuis C., Gosselin P., Jebrak M., "Mineral chemistry of iron oxides: application to mineral exploration, in Andrew, C.J. ed., Digging Deeper", Proceedings of the Ninth Biennial SGA Meeting, Dublin 1 (2007) 497-500.
17. [17] Dare S. A. S., Barnes S., Beaudoin G., "Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS", Mineral Deposita 50 (2014) 607-617. [DOI:10.1007/s00126-014-0560-1]
18. [18] Nadoll P., Mauk J. L., Leveille R. A., Koenig A. E., "Geochemistry of magnetite from porphry Cu and skarn deposits in the southwestern United States", 50 (2015) 493-515. [DOI:10.1007/s00126-014-0539-y]
19. [19] Knipping J. L., Bilenker L. D., Simon A. C., Reich M., Barra F., Deditius A. P., Wälle M., Heinrich C. A., Holtz F., Munizaga R., "Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes", Geochimica et Cosmochimica Acta 171 (2015) 15-38. [DOI:10.1016/j.gca.2015.08.010]
20. [20] Barton M. D., Johnson D. A., "Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization", Geology 24 (1996) 259-262. https://doi.org/10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2 [DOI:10.1130/0091-7613(1996)0242.3.CO;2]
21. [21] Rhodes A. L., Oreskes N., Sheets S., "Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile: in Skinner, B.J., ed., Geology and ore deposits of the Central Andes", Society of Economic Geologists, Special Publication 7 (1999) 299-332. [DOI:10.5382/SP.07.10]
22. [22] Bodnar R. J., "Revised equation and table for determining the freezing point depression for H2O-NaCl solutions", Geochimica et Cosmochimica Acta 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
23. [23] Goldstein R. H., Reynolds T. J., "Systematics of fluid inclusions in diagenetic minerals", SEPM Short Course 31. Society for sedimentary geology, United States of America (1994) 213 pp. [DOI:10.2110/scn.94.31]
24. [24] Kesler S. E., "Ore-forming fluids", Elements 1 (2005) 13-18. [DOI:10.2113/gselements.1.1.13]
25. [25] Fisher J. R., "The volumetric properties of H2O-A graphical portrayal. J. Res. ", US Geol. Surv. 4 (1976) 93-189.
26. [26] Fournier R. O., "Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment", Economic Geology 94 (1999) 1193-1212. [DOI:10.2113/gsecongeo.94.8.1193]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb