دوره 32، شماره 4 - ( 10-1403 )                   جلد 32 شماره 4 صفحات 682-669 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jooypa A, Irannajad M, Mehdilo A, Kouchakzadeh R, Nazari S. Mineralogical studies of tailings of Chadormalu iron ore processing plant from mineral processing viewpoint. www.ijcm.ir 2024; 32 (4) :669-682
URL: http://ijcm.ir/article-1-1873-fa.html
جوی پا امیرحسین، ایران نژاد مهدی، مهدیلو اکبر، کوچک زاده رضا، نظری شیوا. کانی‌شناسی باطله‌های کارخانه فرآوری سنگ آهن چادرملو از دیدگاه فرآوری. مجله بلورشناسی و کانی شناسی ایران. 1403; 32 (4) :669-682

URL: http://ijcm.ir/article-1-1873-fa.html


1- دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران، ایران
2- دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران
3- مدیرعامل شرکت توسعه معادن میراث کویر، تهران، ایران
چکیده:   (443 مشاهده)
باطله­ کارخانه فرآوری سنگ‌آهن چادرملو به روش مغناطیسی پس از پرعیارسازی به روش شناورسازی منجر به کنسانتره آپاتیت می­شود که پس از انحلال برای تولید اسید فسفریک استفاده می­گردد. تجزیه محلول واحد تولید اسید فسفریک نشان می‌دهد که محلول دارای ppm 75 آرسنیک و حدود ppm 313 عناصر خاکی نادر است. به ‌منظور شناسایی خاستگاه آرسنیک و عناصر خاکی نادر، باطله جداکننده مغناطیسی شدت بالا به‌ عنوان خوراک شناورسازی، کنسانتره و باطله شناورسازی به روش­های پراش پرتوی ایکس (XRD)، طیف­سنجی­های فلئورسانس پرتوی ایکس (XRF)، پلاسمای جفت شده القایی (ICP) و با میکروسکوپ‌های الکترونی مجهز به طیف­سنج­های تفکیک طول موج پرتوی ایکس (WDX) و پراکندگی انرژی پرتوی ایکس (EDX) از نظر کانی‌شناسی بررسی شدند. نتایج نشان داد که کنسانتره دارای 6/35 درصد P2O5 بوده و بیشتر از کانی فلوئور آپاتیت و مقدار کمی دولومیت و کلسیت تشکیل شده است. طیف­سنجی ICP نشان داد که مقدار آرسنیک و عناصر خاکی نادر در کنسانتره آپاتیت به ترتیب حدود ppm 345 و بیش از ppm 5000 است. با بررسی­های میکروسکوپ الکترونی مشخص گردید که بخشی از عناصر خاکی نادر به ‌صورت جایگزینی کلسیم در شبکه فلوئور آپاتیت قرار گرفته­اند‌ و بخش دیگر به ‌صورت کانی مونازیت با اندازه کمتر از ٢٠ میکرون هستند. همچنین بر اساس این بررسی­ها، به نظر می‌رسد که آرسنیک به‌ صورت جانشینی فسفر در شبکه کانی­های فلوئور آپاتیت و مونازیت حضور دارد؛ از این رو، بازیابی عناصر خاکی نادر و آرسنیک پیش از انحلال کنسانتره آپاتیت ممکن­ نبوده و ضروری است که نخست عناصر خاکی نادر از محلول به دست آمده از انحلال کنسانتره آپاتیت با یک روش مناسب بازیابی شده و سپس آرسنیک به روش ترسیب از محلول جدا شود.
متن کامل [PDF 1498 kb]   (119 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Palsson B., Martinsson O., Wanhainen C., Fredriksson A., "Unlocking Rare Earth Elements from European Apatite‐Iron Ores,", 1st European Rare Earth Resources Conference, 2014.
2. [2] Parák T., "Rare Earths in the Apatite Iron Ores of Lappland Together With Some Data About the Sr, Th and U Content of These Ores", Economic Geology, vol. 68, pp. 210-221, 1973. [DOI:10.2113/gsecongeo.68.2.210]
3. [3] Soltani F., Abdollahy M., Petersen J., Ram R., Becker M., Koleini S,. Moradkhani D., "Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part I: Direct baking of the concentrate", Hydrometallurgy, vol. 177, pp. 66-78, May 2018, doi: 10.1016/j.hydromet.2018.02.014. [DOI:10.1016/j.hydromet.2018.02.014]
4. [4] Soltani F., Abdollahy M., Petersen J., Ram R., Koleini S., Moradkhani D., "Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part II: Selective leaching of calcium and phosphate and acid baking of the residue", Hydrometallurgy, vol. 184, pp. 29-38, Mar. 2019, doi: 10.1016/j.hydromet.2018.12.024. [DOI:10.1016/j.hydromet.2018.12.024]
5. [5] Davoodpour M., "A look at the Phosphate Industry in the World and Iran's Opportunities in Developing the Value Chain of this Mineral Material (In Persian)", Journal of Science and Technology Construction, vol. 1, no. 1, pp. 51-64, December 2020.
6. [6] Ebadi H., Pourghahremani P., "Optimization of apatite flotation from Urumia Qara-aghaj polymetallic deposit (In Persian)", Journal of Mining Engineering, vol. 10, no. 29, pp. 81-94, February 2016, dor: 20.1001.1.17357616.1394.10.29.7.4.
7. [7] Mehdilo A., Irannajad M., "Characterization of rear earth elements sources in the iron ores by scanning electron microscopy", 3th national conference of laboratory equipment and technologies, Ardabil, Iran, 2022.
8. [8] Arasteh A., Rezai B., Mehdilo A., "Characterization of rare earths elements in tailings of Choghart iron ore processing plant", 9th Iranian Mining Engineering Conference and 6th International Mine & Mining Industries Congress, 2021.
9. [9] Gharabaghi M., Irannajad M., Noaparast M., "A review of the beneficiation of calcareous phosphate ores using organic acid leaching", Hydrometallurgy, vol. 103, no. 1-4, pp. 96-107, Jun. 2010, doi: 10.1016/j.hydromet.2010.03.002. [DOI:10.1016/j.hydromet.2010.03.002]
10. [10] Kawatra S. K., Carlson J. T., "Beneficiation of Phosphate Ore", in EBSCO ebook academic collection, Society for Mining, Metallurgy & Exploration, Incorporated, 2014.
11. [11] Mehdilo A., Irannajad M., "Mineralogical studies of apatites of Gara-aghaj deposit from mineral processing viewpoint", Iranian Journal of Crystallography and Mineralogy, vol. 20, no. 1, 2012.
12. [12] Ptáček P., "Phosphate Rocks", in Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications, InTech, 2016. doi: 10.5772/62214. [DOI:10.5772/62214]
13. [13] Elliott J. C., Wilson R. M., Dowker S. E. P., "Apatite structures", Advances in X-ray Analysis, vol. 45, pp. 172-181, 2002.
14. [14] Santana R., Farnese A., Fortes M., Ataide C., Barrozo M., "Influence of particle size and reagent dosage on the performance of apatite flotation", Sep Purif Technol, vol. 64, no. 1, pp. 8-15, Nov. 2008, doi: 10.1016/j.seppur.2008.09.004. [DOI:10.1016/j.seppur.2008.09.004]
15. [15] Liu W, .et al., "Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature", Geochim Cosmochim Acta, vol. 196, pp. 144-159, Jan. 2017, doi: 10.1016/j.gca.2016.09.023. [DOI:10.1016/j.gca.2016.09.023]
16. [16] McConnell D., Apatite. Vienna: Springer Vienna, 1973. doi: 10.1007/978-3-7091-8314-4. [DOI:10.1007/978-3-7091-8314-4]
17. [17] Owens C. L., Nash G. R., Hadler K., Fitzpatrick R. S., Anderson C. G., Wall F., "Apatite enrichment by rare earth elements: A review of the effects of surface properties", Adv Colloid Interface Sci, vol. 265, pp. 14-28, Mar. 2019, doi: 10.1016/j.cis.2019.01.004. [DOI:10.1016/j.cis.2019.01.004]
18. [18] Krneta S., Ciobanu C. L., Cook N. J., Ehrig K., Kontonikas-Charos A., "Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia", Minerals, vol. 7, no. 8, p. 135, Aug. 2017, doi: 10.3390/min7080135. [DOI:10.3390/min7080135]
19. [19] Adib A., Ahmadi R., Rahimi E., "The recovery of rare-earth elements from apatite concentrate by acid and digestion-water leaching processes in morvarid iron mine, Iran", Journal of Mining Science, vol. 57, no. 1, pp. 131-143, Jan. 2021, doi: 10.1134/S1062739121010142. [DOI:10.1134/S1062739121010142]
20. [20] Battsengel A., Batnasan A., Narankhuu A., Haga K., Watanabe Y., Shibayama A., "Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation", Hydrometallurgy, vol. 179, pp. 100-109, Aug. 2018, doi: 10.1016/j.hydromet.2018.05.024. [DOI:10.1016/j.hydromet.2018.05.024]
21. [21] Ren J., Song S., Lopez-Valdivieso A., Lu S., "Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant", Int J Miner Process, vol. 59, no. 3, pp. 237-245, Jun. 2000, doi: 10.1016/S0301-7516(99)00075-7. [DOI:10.1016/S0301-7516(99)00075-7]
22. [22] Foerster H., Jafarzadeh A., "The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field", Economic Geology, vol. 89, no. 8, pp. 1697-1721, Dec. 1994, doi: 10.2113/gsecongeo.89.8.1697. [DOI:10.2113/gsecongeo.89.8.1697]
23. [23] Jami M., Dunlop A. C., Cohen D. R., "Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite-Magnetite Deposit, Central Iran", Economic Geology, vol. 102, no. 6, pp. 1111-1128, Sep. 2007, doi: 10.2113/gsecongeo.102.6.1111. [DOI:10.2113/gsecongeo.102.6.1111]
24. [24] Bonyadi Z., Davidson G. J., Mehrabi B., Meffre S., Ghazban F., "Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry", Chem Geol, vol. 281, no. 3-4, pp. 253-269, Feb. 2011, doi: 10.1016/j.chemgeo.2010.12.013. [DOI:10.1016/j.chemgeo.2010.12.013]
25. [25] Mokhtari M., Zadeh G., Emami M., "Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry", Journal of Earth System Science, vol. 122, no. 3, pp. 795-807, Jun. 2013, doi: 10.1007/s12040-013-0313-z. [DOI:10.1007/s12040-013-0313-z]
26. [26] Teimouri S., Ghorbani M., Modabberi S., "Petrography and mineral chemistry of metasomatites related to Iron-Apatite mineralization in Kiruna-type deposits in the Bafq region with a focus on Choghart and Chadormalu mining district, Central Iran", Iranian Journal of Crystallography and Mineralogy, vol. 30, no. 4, 2022, doi: 10.52547/ijcm.30.4.667. [DOI:10.52547/ijcm.30.4.667]
27. [27] Ashrafi A., Rahimisadegh R., "Preparation of geological model of Chadormalu iron ore mine using Rockwork16 software (In Persian)", National Conference of Mineral Sciences, September 2014.
28. [28] Tahri A., Dehghani A., Kafiri GH,. "Investigation of the performance of medium-intensity magnetic separators of Chadormalu processing plant (In Persian)", National Congress of Iron and Steel Industries, March 2015.
29. [29] Hughes J. M., "The many facets of apatite", American Mineralogist, vol. 100, no. 5-6, pp. 1033-1039, May 2015, doi: 10.2138/am-2015-5193. [DOI:10.2138/am-2015-5193]
30. [30] Broom-Fendley S., Brady A. E., Wall F., Gunn G., Dawes W., "REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite", Ore Geol Rev, vol. 81, pp. 23-41, Mar. 2017, doi: 10.1016/j.oregeorev.2016.10.019. [DOI:10.1016/j.oregeorev.2016.10.019]
31. [31] Hoshino M., Sanematsu K., Watanabe Y., "REE Mineralogy and Resources", 2016, pp. 129-291. doi: 10.1016/bs.hpcre.2016.03.006. [DOI:10.1016/bs.hpcre.2016.03.006]
32. [32] Wall F., Rollat A., Pell R. S., "Responsible Sourcing of Critical Metals", Elements, vol. 13, no. 5, pp. 313-318, Oct. 2017, doi: 10.2138/gselements.13.5.313. [DOI:10.2138/gselements.13.5.313]
33. [33] Liu W., et al., "Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature", Geochim Cosmochim Acta, vol. 196, pp. 144-159, Jan. 2017, doi: 10.1016/j.gca.2016.09.023. [DOI:10.1016/j.gca.2016.09.023]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb