Volume 32, Issue 4 (12-2024)                   www.ijcm.ir 2024, 32(4): 669-682 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jooypa A, Irannajad M, Mehdilo A, Kouchakzadeh R, Nazari S. Mineralogical studies of tailings of Chadormalu iron ore processing plant from mineral processing viewpoint. www.ijcm.ir 2024; 32 (4) :669-682
URL: http://ijcm.ir/article-1-1873-en.html
1- Department of Mining Engineering, Amirkabir University of Technology, Tehran
2- Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil
3- Managing director at Mirase Kavir Company, Tehran
Abstract:   (446 Views)
The tailings come from Chadormalu iron ore processing plant is beneficiated by flotation method. The obtained apatite concentrate is dissolved in acidic media and used to produce phosphoric acid. The chemical analysis shows that the phosphoric acid solution contains 75 ppm of arsenic (As) and 313 ppm of Rare Earth Elements (REE). To identify the source of As and REE, the samples taken from flotation feed (tailings of high intensity magnetic separator), flotation tailings, and apatite concentrate were characterized mineralogically using XRD, XRF, ICP-OES, and scanning electron microscopy (SEM) equipped with EDX and WDX. The results revealed that the concentrate containing 35.6% P2O5 is mainly composed of fluorapatite mineral and a small amount of dolomite and calcite. ICP analysis showed that the As and REE contents in the apatite concentrate are 345 ppm and more than 5000 ppm, respectively. Through the SEM studies, it was identified that some parts of REE have been placed in the fluorapatite lattice as substituting for calcium, and the other part is in the form of monazite minerals with dimensions finer than 20 microns. It was also revealed that As is probably substituted for phosphorus (P) in the lattice structure of fluorapatite and monazite minerals. Thus, it will not be possible to recover REE and As before dissolving the apatite concentrate. Therefore, REE must be recovered firstly from the solution by an appropriate method and then As to be separated from the solution by the precipitation method.
Full-Text [PDF 1498 kb]   (120 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Palsson B., Martinsson O., Wanhainen C., Fredriksson A., "Unlocking Rare Earth Elements from European Apatite‐Iron Ores,", 1st European Rare Earth Resources Conference, 2014.
2. [2] Parák T., "Rare Earths in the Apatite Iron Ores of Lappland Together With Some Data About the Sr, Th and U Content of These Ores", Economic Geology, vol. 68, pp. 210-221, 1973. [DOI:10.2113/gsecongeo.68.2.210]
3. [3] Soltani F., Abdollahy M., Petersen J., Ram R., Becker M., Koleini S,. Moradkhani D., "Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part I: Direct baking of the concentrate", Hydrometallurgy, vol. 177, pp. 66-78, May 2018, doi: 10.1016/j.hydromet.2018.02.014. [DOI:10.1016/j.hydromet.2018.02.014]
4. [4] Soltani F., Abdollahy M., Petersen J., Ram R., Koleini S., Moradkhani D., "Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part II: Selective leaching of calcium and phosphate and acid baking of the residue", Hydrometallurgy, vol. 184, pp. 29-38, Mar. 2019, doi: 10.1016/j.hydromet.2018.12.024. [DOI:10.1016/j.hydromet.2018.12.024]
5. [5] Davoodpour M., "A look at the Phosphate Industry in the World and Iran's Opportunities in Developing the Value Chain of this Mineral Material (In Persian)", Journal of Science and Technology Construction, vol. 1, no. 1, pp. 51-64, December 2020.
6. [6] Ebadi H., Pourghahremani P., "Optimization of apatite flotation from Urumia Qara-aghaj polymetallic deposit (In Persian)", Journal of Mining Engineering, vol. 10, no. 29, pp. 81-94, February 2016, dor: 20.1001.1.17357616.1394.10.29.7.4.
7. [7] Mehdilo A., Irannajad M., "Characterization of rear earth elements sources in the iron ores by scanning electron microscopy", 3th national conference of laboratory equipment and technologies, Ardabil, Iran, 2022.
8. [8] Arasteh A., Rezai B., Mehdilo A., "Characterization of rare earths elements in tailings of Choghart iron ore processing plant", 9th Iranian Mining Engineering Conference and 6th International Mine & Mining Industries Congress, 2021.
9. [9] Gharabaghi M., Irannajad M., Noaparast M., "A review of the beneficiation of calcareous phosphate ores using organic acid leaching", Hydrometallurgy, vol. 103, no. 1-4, pp. 96-107, Jun. 2010, doi: 10.1016/j.hydromet.2010.03.002. [DOI:10.1016/j.hydromet.2010.03.002]
10. [10] Kawatra S. K., Carlson J. T., "Beneficiation of Phosphate Ore", in EBSCO ebook academic collection, Society for Mining, Metallurgy & Exploration, Incorporated, 2014.
11. [11] Mehdilo A., Irannajad M., "Mineralogical studies of apatites of Gara-aghaj deposit from mineral processing viewpoint", Iranian Journal of Crystallography and Mineralogy, vol. 20, no. 1, 2012.
12. [12] Ptáček P., "Phosphate Rocks", in Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications, InTech, 2016. doi: 10.5772/62214. [DOI:10.5772/62214]
13. [13] Elliott J. C., Wilson R. M., Dowker S. E. P., "Apatite structures", Advances in X-ray Analysis, vol. 45, pp. 172-181, 2002.
14. [14] Santana R., Farnese A., Fortes M., Ataide C., Barrozo M., "Influence of particle size and reagent dosage on the performance of apatite flotation", Sep Purif Technol, vol. 64, no. 1, pp. 8-15, Nov. 2008, doi: 10.1016/j.seppur.2008.09.004. [DOI:10.1016/j.seppur.2008.09.004]
15. [15] Liu W, .et al., "Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature", Geochim Cosmochim Acta, vol. 196, pp. 144-159, Jan. 2017, doi: 10.1016/j.gca.2016.09.023. [DOI:10.1016/j.gca.2016.09.023]
16. [16] McConnell D., Apatite. Vienna: Springer Vienna, 1973. doi: 10.1007/978-3-7091-8314-4. [DOI:10.1007/978-3-7091-8314-4]
17. [17] Owens C. L., Nash G. R., Hadler K., Fitzpatrick R. S., Anderson C. G., Wall F., "Apatite enrichment by rare earth elements: A review of the effects of surface properties", Adv Colloid Interface Sci, vol. 265, pp. 14-28, Mar. 2019, doi: 10.1016/j.cis.2019.01.004. [DOI:10.1016/j.cis.2019.01.004]
18. [18] Krneta S., Ciobanu C. L., Cook N. J., Ehrig K., Kontonikas-Charos A., "Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia", Minerals, vol. 7, no. 8, p. 135, Aug. 2017, doi: 10.3390/min7080135. [DOI:10.3390/min7080135]
19. [19] Adib A., Ahmadi R., Rahimi E., "The recovery of rare-earth elements from apatite concentrate by acid and digestion-water leaching processes in morvarid iron mine, Iran", Journal of Mining Science, vol. 57, no. 1, pp. 131-143, Jan. 2021, doi: 10.1134/S1062739121010142. [DOI:10.1134/S1062739121010142]
20. [20] Battsengel A., Batnasan A., Narankhuu A., Haga K., Watanabe Y., Shibayama A., "Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation", Hydrometallurgy, vol. 179, pp. 100-109, Aug. 2018, doi: 10.1016/j.hydromet.2018.05.024. [DOI:10.1016/j.hydromet.2018.05.024]
21. [21] Ren J., Song S., Lopez-Valdivieso A., Lu S., "Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant", Int J Miner Process, vol. 59, no. 3, pp. 237-245, Jun. 2000, doi: 10.1016/S0301-7516(99)00075-7. [DOI:10.1016/S0301-7516(99)00075-7]
22. [22] Foerster H., Jafarzadeh A., "The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field", Economic Geology, vol. 89, no. 8, pp. 1697-1721, Dec. 1994, doi: 10.2113/gsecongeo.89.8.1697. [DOI:10.2113/gsecongeo.89.8.1697]
23. [23] Jami M., Dunlop A. C., Cohen D. R., "Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite-Magnetite Deposit, Central Iran", Economic Geology, vol. 102, no. 6, pp. 1111-1128, Sep. 2007, doi: 10.2113/gsecongeo.102.6.1111. [DOI:10.2113/gsecongeo.102.6.1111]
24. [24] Bonyadi Z., Davidson G. J., Mehrabi B., Meffre S., Ghazban F., "Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry", Chem Geol, vol. 281, no. 3-4, pp. 253-269, Feb. 2011, doi: 10.1016/j.chemgeo.2010.12.013. [DOI:10.1016/j.chemgeo.2010.12.013]
25. [25] Mokhtari M., Zadeh G., Emami M., "Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry", Journal of Earth System Science, vol. 122, no. 3, pp. 795-807, Jun. 2013, doi: 10.1007/s12040-013-0313-z. [DOI:10.1007/s12040-013-0313-z]
26. [26] Teimouri S., Ghorbani M., Modabberi S., "Petrography and mineral chemistry of metasomatites related to Iron-Apatite mineralization in Kiruna-type deposits in the Bafq region with a focus on Choghart and Chadormalu mining district, Central Iran", Iranian Journal of Crystallography and Mineralogy, vol. 30, no. 4, 2022, doi: 10.52547/ijcm.30.4.667. [DOI:10.52547/ijcm.30.4.667]
27. [27] Ashrafi A., Rahimisadegh R., "Preparation of geological model of Chadormalu iron ore mine using Rockwork16 software (In Persian)", National Conference of Mineral Sciences, September 2014.
28. [28] Tahri A., Dehghani A., Kafiri GH,. "Investigation of the performance of medium-intensity magnetic separators of Chadormalu processing plant (In Persian)", National Congress of Iron and Steel Industries, March 2015.
29. [29] Hughes J. M., "The many facets of apatite", American Mineralogist, vol. 100, no. 5-6, pp. 1033-1039, May 2015, doi: 10.2138/am-2015-5193. [DOI:10.2138/am-2015-5193]
30. [30] Broom-Fendley S., Brady A. E., Wall F., Gunn G., Dawes W., "REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite", Ore Geol Rev, vol. 81, pp. 23-41, Mar. 2017, doi: 10.1016/j.oregeorev.2016.10.019. [DOI:10.1016/j.oregeorev.2016.10.019]
31. [31] Hoshino M., Sanematsu K., Watanabe Y., "REE Mineralogy and Resources", 2016, pp. 129-291. doi: 10.1016/bs.hpcre.2016.03.006. [DOI:10.1016/bs.hpcre.2016.03.006]
32. [32] Wall F., Rollat A., Pell R. S., "Responsible Sourcing of Critical Metals", Elements, vol. 13, no. 5, pp. 313-318, Oct. 2017, doi: 10.2138/gselements.13.5.313. [DOI:10.2138/gselements.13.5.313]
33. [33] Liu W., et al., "Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature", Geochim Cosmochim Acta, vol. 196, pp. 144-159, Jan. 2017, doi: 10.1016/j.gca.2016.09.023. [DOI:10.1016/j.gca.2016.09.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb