دوره 30، شماره 4 - ( 10-1401 )                   جلد 30 شماره 4 صفحات 772-761 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dolatkhah, Zargarshoshtari, Farbod. Fabrication and investigation of some properties of titanium dioxide nanorods/gadolinium oxide nanocomposites. www.ijcm.ir 2022; 30 (4) :761-772
URL: http://ijcm.ir/article-1-1821-fa.html
دولتخواه مهسا، زرگرشوشتری مرتضی، فربد منصورر. ساخت و بررسی برخی ویژگی‌های نانوکامپوزیت‌های نانومیله‌های دی‌اکسید تیتانیوم / اکسید گادولینیم. مجله بلورشناسی و کانی شناسی ایران. 1401; 30 (4) :761-772

URL: http://ijcm.ir/article-1-1821-fa.html


1- دانشگاه شهید چمران اهواز
چکیده:   (750 مشاهده)
در این پژوهش، نانوکامپوزیت­های نانومیله­های دی­اکسید تیتانیوم / اکسید گادولینیم ساخته شده و برخی از ویژگی­های آن­ها بررسی گردید. نانومیله­های دی­اکسید تیتانیوم به روش ریزموج ساخته شدند و ویژگی­های ساختاری، ریختاری، اپتیکی و آب­گریزی-آب­دوستی آن­ها بررسی گردید. نانوکامپوزیت­هایی با نانومیله­های دی­اکسید تیتانیوم و مقادیر مختلف 5، 10، 15 و 20 درصد اکسید گادولینیم ساخته شد. ویژگی­های این نمونه­ها با پراش­سنج پرتوی ایکس، میکروسکوپ الکترونی روبشی، طیف­سنج پراکندگی انرژی پرتوی ایکس و طیف­سنج مرئی - فرابنفش بررسی شد. نتایج نشان دادند که نانومیله­های دی­اکسید تیتانیوم دارای فاز روتیل با ساختار چارگوشی و دارای طول میانگین حدود 32 نانومتر هستند. نمونه‌های لایه‌ای از نانومیله‌های دی‌اکسید تیتانیوم، اکسید گادولینیوم (Gd2O3) و همچنین نانوکامپوزیت‌های مختلف به­روش پوشش‌دهی چرخشی ساخته شد. زاویه تماس نمونه لایه‌ای از نانومیله‌های دی‌اکسید تیتانیوم حدود 44 درجه بوده که نشان دهنده آب­دوستی این نمونه است. نتایج همچنین نشان داد که نمونه نانوکامپوزیت نانومیله­های دی­اکسید تیتانیوم / اکسید گادولینیم آب­دوستی کمتری دارد. گاف انرژی اپتیکی نانومیله تیتانیوم دی­اکسید حدود 9/2 الکترون­ولت و برای نانوکامپوزیت­ها با درصدهای مختلف گادولینیم اکسید تقریباً ثابت به­دست آمد.    
متن کامل [PDF 1591 kb]   (253 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Li. Yan, J. Yan, W. Ding, Y. Chen, L. M. Pack, and T. Chen, "Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles", Mutagenesis 32 (1), 33-46 (2017). [DOI:10.1093/mutage/gew065]
2. [2] B. Daniel, "A Guide to the Elements, Rev. Edition (Stwertka, Albert)", (1999).
3. [3] X. Xiao, K. Ouyang, R. Liu and J. Liang, "Anatase type titania nanotube arrays direct fabricated by anodization without annealing", Applied Surface Science 255 (6), 3659-3663 (2009). [DOI:10.1016/j.apsusc.2008.10.014]
4. [4] M. Kajbafvala, M.Farbod, A. M. Ghalambor, "Synthesis of TiO2 nanoparticles and doping of them with Lanthanides to improve the photocatalytic activity", M. S. Thesis, shahid chamran university, IR (2011).
5. [5] N. Yosefali, A. Reyhani, Z. Mortazavi, "Synthesis of silver doped TiO2 nanostructures and their characterization for photocatalystic applications", M. S. Thesis, Imam Khomeini International university, IR (2016).
6. [6] M. Khademolrasol, M.Farbod, M. Zargar, "The TiO2 Nanoparticles Synthesis and the Investigation of Their Photocatalytic Property", M. S. Thesis, shahid chamran university, IR (2009).
7. [7] O, K, M. Tanaka, J. Takeda, Y. Kawazoe, "Nano-and micromaterials", vol 9, New York, NY Springer (2008).
8. [8] Edelstein S., Alan R. C., Cammaratra, "Nanomaterials: synthesis, properties and applications", CRC press (1998). [DOI:10.1201/9781482268591]
9. [9] Jr. Poole, P. Charles, J. Frank, Owens, "Introduction to nanotechnology", John Wiley & Sons (2003).
10. [10] S. Cotton, "Lanthanide and actinide chemistry 2006", Wiley: Chichester, UK (2013). [DOI:10.1002/0470010088]
11. [11] M. A. McDonald, K. L. Watkin, "Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles", Academic radiology 13 (4), 421-427 (2006). [DOI:10.1016/j.acra.2005.11.005]
12. [12] X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu, W. Shangguan, "Synthesis of titania nanotubes by microwave irradiation", Solid State Communications, 136, 513-517 (2005). [DOI:10.1016/j.ssc.2005.09.023]
13. [13] X. Zhao, J. Wang, X. Dong, X. Wang, G. Liu, W. Yu, L. Wang, "Impact of pH on Morphology and Electrochemical Performance of LiFePO4 as Cathode for Lithium-ion Batteries", Integrated Ferroelectrics, 164(1), 98-102 (2015). [DOI:10.1080/10584587.2015.1044878]
14. [14] N. M. Ganesan1, N. Muthukumarasamy, R. Balasundaraprabhu, T. S. Senthil, "Effect of pH on the surface morphology and structural properties of TiO2 nanocrystals prepared by simple sol-gel method", Iranian Journal of Science & Technology, 38A(2), 187-191 (2014).
15. [15] Y. S. Bekir, A. Al-Sharafi and A. Haider, "Self-Cleaning of Surfaces and Water Droplet Mobility", Cambridge, MA, USA: Elsevier, 45-98 (2019).
16. [16] B. Azzedine, M. Chakaroun and A. Fischer, "1-Organic semiconductors", In Organic Lasers, Elsevier, 1-47 (2017). [DOI:10.1016/B978-1-78548-158-1.50001-8]
17. [17] S. Wassila, N. Hfayedh, A. Megriche, M. Girtan and M. El Maaoui, "Hydrophilic/hydrophobic and optical properties of B2O3 doped TiO2 sol-gel thin films: Effect of B2O3 content, film thickness and surface roughness", M.Ch.Ph 215, 31-39 (2018). [DOI:10.1016/j.matchemphys.2018.03.080]
18. [18] F. Jahantigh, M. Eskandari and M. B. Ghorayshi, "The effect of titanium dioxide nanoparticles on the mechanical properties of polycarbonate for use industry", scientific journal of nanomaterials 8 (27), 173-174 (1395).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb