دوره 31، شماره 1 - ( 1-1402 )                   جلد 31 شماره 1 صفحات 206-195 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naghavi M, Gholizadeh A. Effect of zinc substitution for manganese on microstructural, optical and photocatalytic properties of LaMnO3 nanoparticles. www.ijcm.ir 2023; 31 (1) :195-206
URL: http://ijcm.ir/article-1-1750-fa.html
نقوی مریم، قلی زاده احمد. اثر جانشانی روی به‌جای منگنز بر ویژگی‌های ریزساختاری، نوری و فوتوکاتالیزوری نانوذرات LaMnO3. مجله بلورشناسی و کانی شناسی ایران. 1402; 31 (1) :195-206

URL: http://ijcm.ir/article-1-1750-fa.html


1- دانشگاه دامغان
چکیده:   (695 مشاهده)
ویژگی­های ریزساختاری، نوری و فوتوکاتالیزوری نانو­ذرات  LaMn1-xZnxO3 (15/0 ،1/0 ،05/0،0x =) با پراش­سنج پرتو ایکس، طیف­سنج­های رامان و تبدیل فوریه فروسرخ، میکروسکوپ الکترونی روبشی گسیل میدانی، طیف‌سنج پراکندگی انرژی پرتو X، و طیف­سنج فرابنفش بررسی شد. نتایج ساختاری نشانگر یک گذار فاز ساختاری از لوزی رخ (گروه فضایی  ) به راست‌گوشه (گروه فضایی Pbnm I) است. منگنایت لانتانیم (LM) از امیدوار کننده­ترین و کارآمدترین فوتوکاتالیزورها برای تخریب آلاینده‌های آلی است. برای تعیین عملکرد فوتوکاتالیزوری نانوذرات LaMn1-xZnxO3، اثر سه عامل مقدار کاتالیزور، pH محلول و زمان تابش بر تخریب محلول آبی متیل اورانژ (MO) و متیل بلو (MB) بررسی شد. 3O1/0Zn9/0MnLa برای تخریب MO و MB زیر تابش نور خورشید توانایی فوتوکاتالیزوری بالاتری را نسبت به LM نشان داد. سازوکار احتمالی برای عملکرد فوتوکاتالیزوری بهتر نمونه‌ها مورد بحث قرار گرفت. نمونه 3O1/0Zn9/0MnLa پس از شش چرخه تخریب MO و MB در شرایط یکسان، هیچ اتلاف قابل توجهی را نشان نداد.       
متن کامل [PDF 1799 kb]   (242 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] J. B.Goodenough, I. Kazeminezhad, "Colssal Magnetorestance in La1-xAxMnO3 Perovskites." Aust. J. Phys, (1999). [DOI:10.1071/P98070]
2. [2] A. Gholizadeh, "The effects of A/B-site substitution on structural, redox and catalytic properties of lanthanum ferrite nanoparticles." Journal of Materials Research and Technology 8 (2019) 457-466. [DOI:10.1016/j.jmrt.2017.12.006]
3. [3] Mo, H., Nan, H., Lang, X., Liu, S., Qiao, L., Hu, X., & Tian, H. "Influence of calcium doping on performance of LaMnO3 supercapacitors." Ceramics International, 44 (2018) 9733-9741.‏ [DOI:10.1016/j.ceramint.2018.02.205]
4. [4] Supelano, G. I., Barón-González, A. J., Santos, A. S., Ortíz, C., Gómez, J. A. M., & Vargas, C. A. P. "Effect of Mg addition on LaMnO3 ceramic system." Journal of materials research and technology 7 (2018) 77-81.‏ [DOI:10.1016/j.jmrt.2017.05.012]
5. [5] Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P., & Stevenson, K. J. "Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes." Nature materials, 13(2014) 726. [DOI:10.1038/nmat4000]
6. [6] T. Raoofi, M.H. Ehsani, D. Sanavi khoshnood, "Investigation of particle size effect on structural and magnetic properties of La0.6Sr0.4MnO3 manganite", Iranian Journal of Crystallography and Mineralogy 24 (2017) 691-702.
7. [7] Ahmad Gholizadeh, "Structural and magnetic investigations of LaMn1-xCoxO3 (x = 0.00, 0.25, 0.50, 0.75, 1.00) perovskite nano-particles", Iranian Journal of Crystallography and Mineralogy 22 (2015) 599-606.
8. [8] Sh. Abarashi, N. Tajabor, M. Rezaei, M. Behdani, "Synthesis of La0.7Ca0.3-x SrxMnO3 nano-crystallites by mechanical activation and study their microstructure and magnetotransport properties", Iranian Journal of Crystallography and Mineralogy 18 (2010) 301-312.
9. [9] M. R. Alinejad, N. Tajabor, S. Masoomi, "Effect of substitution of cobalt on crystal structure and magnetoresistance of La0.75Sr0.2Mn1-xCoxO3 compositions prepared by sol-gel technique", Iranian Journal of Crystallography and Mineralogy 14 (2006) 413-430.
10. [10] Tian, H., Lang, X., Nan, H., An, P., Zhang, W., Hu, X., & Zhang, J. "Nanosheet-assembled LaMnO3@ NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors." Electrochimica Acta. (2019) 318 (2019) 651-659. [DOI:10.1016/j.electacta.2019.06.133]
11. [11] Shafi, P. M., Ganesh, V., & Bose, A. C. "LaMnO3/RGO/PANI Ternary Nanocomposites for Supercapacitor Electrode Application and Their Outstanding Performance in All-Solid-State Asymmetrical Device Design." ACS Applied Energy Materials, 1 (2018) 2802-2812.‏ [DOI:10.1021/acsaem.8b00459]
12. [12] Huang, H., Liu, Q., Lu, B., Wang, X., & Hu, J. "LaMnO3-diamond composites as efficient oxygen reduction reaction catalyst for Zn-air battery." Diamond and Related Materials 91 (2019) 199-206.‏ [DOI:10.1016/j.diamond.2018.11.024]
13. [13] I. Alvarez-Serrano, C. Pico, and M. L. Veiga. "Structural characterization, electric and magnetic behaviour of Zn-doped manganites" Solid state sciences 6 (2004) 1321-1326. [DOI:10.1016/j.solidstatesciences.2004.07.022]
14. [14] S. Hu, L., Tong, W., Zhu, H., & Zhang, Y. "The effects of Jahn-Teller distortion changes on transport properties in LaMn1−xZnxO3." Journal of Physics: Condensed Matter, 15 (2003) 2033. [DOI:10.1088/0953-8984/15/12/320]
15. [15] E. A. S. Patra, G. Gogoi, R. K. Sahu, and M. Qureshi. "Modulating the electronic structure of lanthanum manganite by ruthenium doping for enhanced photocatalytic water oxidation." Physical Chemistry Chemical Physics 19, no. 19 (2017): 12167-12174 [DOI:10.1039/C7CP01444A]
16. [16] A. Arabi, M. Fazli, and M. H. Ehsani. "Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation." Bulletin of Materials Science 41, no. 3 (2018): 77. [DOI:10.1007/s12034-018-1590-6]
17. [17] Esmaili L., Gholizadeh A., "Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite", Iranian Journal of Crystallography and Mineralogy 26 (2019)1013-1026. [DOI:10.29252/ijcm.26.4.1013]
18. [18] A. Gholizadeh, and M. Beyranvand, "Structural, magnetic, elastic, and dielectric properties of Mg0.3−xBaxCu0.2Zn0.5Fe2O4 nanoparticles", Physica B: Physics of Condensed Matter, 584 (2020) 412079. [DOI:10.1016/j.physb.2020.412079]
19. [19] Gholizadeh A., Tajabor N., "Influence of N2- and Ar-ambient annealing on the physical properties of SnO2:Co transparent conducting films", Materials Science in Semiconductor Processing 13 (2010) 162. [DOI:10.1016/j.mssp.2010.10.004]
20. [20] Gong, F., Tong, W., Tan, S., & Zhang, Y. "Large effect of small Zn doping on the electric and magnetic properties in LaMn1−xZnxO3". Physical Review B, 68 (2003) 174410. [DOI:10.1103/PhysRevB.68.174410]
21. [21] R.D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallogr. A 32 (1976) 751-767 [DOI:10.1107/S0567739476001551]
22. [22] M. Dokiya, O. Yamamoto, H. Tagawa, S.C. Singhal, "Proceedings of the fourth international symposium on SOLID OXIDE FUEL CELLS (SOFC-IV)", THE ELECTROCHEMICAL SOCIETY,INC., (1995).
23. [23] Dodiya, N., & Varshney, D. "Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3 (0.075≤x≤0.15). Journal of Molecular Structure 1031 (2013) 104-109. [DOI:10.1016/j.molstruc.2012.07.037]
24. [24] Martín-Carrón, L., De Andres, A., Martínez-Lope, M. J., Casais, M. T., & Alonso, J. A. "Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites". Physical Review B, 66 (2002) 174303. [DOI:10.1103/PhysRevB.66.174303]
25. [25] Gnezdilov, V. P., Yeremenko, A. V., Pashkevich, Y. G., Lemmens, P., Güntherodt, G., Shiryaev, S. V, & Barilo, S. N. Phonon Raman scattering in LaMn1−xCoxO3 (x= 0, 0.2, 0.3, 0.4, and 1.0). Low Temperature Physics, 29 (2003) 963-966. [DOI:10.1063/1.1614244]
26. [26] Gao, F., Chen, J., Farhoudi, M. M., Wang, X. L., & Dou, S. X. "Structures, and far-infrared and Raman spectra of GdMn1−xCoxO3 (x=0-1.0)." Thin Solid Films 518 (2003) e24-e27. [DOI:10.1016/j.tsf.2010.03.119]
27. [27] De Marzi, G., Popović, Z. V., Cantarero, A., Dohčević-Mitrović, Z., Paunović, N., Bok, J., & Sapiña, F. "Effect of A-site and B-site substitution on the infrared reflectivity spectra of La1−yAy Mn1−xBxO3 (A= Ba, Sr; B= Cu, Zn, Sc; 0 < y ≤ 0.3; 0 ≤x ≤ 0.1) manganites." Physical Review B 68 (2003) 064302.
28. [28] Van Minh, N., Kim, S. J., & Yang, I. S. "Effect of Ni on structure and Raman scattering of LaMn1− xNixO3+ δ." Physica B: Condensed Matter, 327(2003) 208-210. [DOI:10.1016/S0921-4526(02)01729-5]
29. [29] A. Ahmad, H. Bae, and I. Rhee. "Silica-coated gadolinium-doped lanthanum strontium manganite nanoparticles for self-controlled hyperthermia applications." AIP Advances 8 (2018) 015108. [DOI:10.1063/1.5011717]
30. [30] S. Farhadi, F. Mahmoudi, M. M. Amini, M. Dusek, and M. Jarosova. "Synthesis and characterization of a series of novel perovskite-type LaMnO3/Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions." Dalton Transactions 46 (2017) 3252-3264. [DOI:10.1039/C6DT04866H]
31. [31] Z. Sihaib, F. Puleo, G. Pantaleo, V. La Parola, José Luis Valverde, Sonia Gil, Leonarda Francesca Liotta, and Anne Giroir-Fendler. "The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation." Catalysts 9 (2019) 226. [DOI:10.3390/catal9030226]
32. [32] N. Shamgani, A. Gholizadeh, "Structural, magnetic and elastic properties of Mn0.3-xMgxCu0.2Zn0.5Fe3O4 nanoparticles", Ceramics International 45 (2019) 239-246. [DOI:10.1016/j.ceramint.2018.09.158]
33. [33] Thakur, P., Thakur, A., & Yadav, K. "Study of variation in the band gap with concentration of TiO2In (LaMnO3)1-x/ (TiO2x (where x= 0.0, 0.1, 0.2, 0.3 and 0.4) nanocomposites." AIP Publishing LLC. 1728 (2016) 020414. [DOI:10.1063/1.4946465]
34. [34] T.‏ Hamada, N., Sawada, H., & Terakura, K. "Electronic Band Structures of LaMO3 (M= Ti, V, Cr, Ni, Cu) in the Local Spin-Density Approximation In Spectroscopy of Mott Insulators and Correlated Metals." Springer, Berlin, Heidelberg 119 (1995) 95-105. [DOI:10.1007/978-3-642-57834-2_8]
35. [35] Arima, T. H., & Tokura, Y. "Optical study of electronic structure in perovskite-type RMO3 (R= La, Y; M= Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)." Journal of the Physical Society of Japan, 64 (1995) 2488-2501. [DOI:10.1143/JPSJ.64.2488]
36. [36] M. Satpathy, S., Popović, Z. S., & Vukajlović, F. R. "Density‐functional studies of the electronic structure of the perovskite oxides: La1−xCaxMnO3", Journal of applied physics, 79 (1996) 4555-4557. [DOI:10.1063/1.361546]
37. [37] Kumar, S. R., Abinaya, C. V., Amirthapandian, S., & Ponpandian, N. "Enhanced visible light photocatalytic activity of porous LaMnO3 sub-micron particles in the degradation of rose bengal." Materials Research Bulletin 93 (2017) 270-281. [DOI:10.1016/j.materresbull.2017.05.024]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb