دوره 27، شماره 2 - ( 4-1398 )                   جلد 27 شماره 2 صفحات 281-294 | برگشت به فهرست نسخه ها

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Boomeri M, Bagheri S. Mineral chemistry of apatite in the Lar igneous complex, North of Zahedan. www.ijcm.ir. 2019; 27 (2) :281-294
URL: http://ijcm.ir/article-1-1265-fa.html
مرادی راحله، بومری محمد، باقری ساسان. بررسی شیمی آپاتیت در مجموعه آذرین لار، شمال زاهدان. مجله بلورشناسی و کانی شناسی ایران. 1398; 27 (2) :281-294

URL: http://ijcm.ir/article-1-1265-fa.html

دانشگاه سیستان و بلوچستان
چکیده:   (929 مشاهده)
مجموعه آذرین لار در پهنه جوش خورده سیستان واقع است. سنگ‌های آذرین به شکل استوک، دایک، گدازه و آذرآواری هستند. کانی‌زایی مس- مولیبدن به وسیله سیال­های گرمابی در استوک‌ها تشکیل شده است. آپاتیت فراوان‌ترین کانی فرعی در سنگ‌های آذرین مورد بررسی است که به شکل­های منشوری و برشی قابل مشاهده است. بر پایه نتایج ریزکاوالکترونی، آپاتیت‌های مورد بررسی از نوع فلوئور آپاتیت و با مقدار کمی کلر هستند که نشان دهنده تعادل آن با یک مذاب/ سیال نسبتاً آبدار و اکسایشی است. این مذاب/ سیال در گستره سامانه‌های کانی‌زایی شده دنیا قرار می‌گیرد. حضور آپاتیت‌های کلر پایین و سنگ‌های میزبان پتاسیم بالا (شوشونیتی) می‌تواند نشان دهنده جدایش کلر - پتاسیم ماگمای اولیه باشد که نیازمند آبزدایی رسوبات فرورانده شده در گوشته سنگ کره­ای عمیق و همچنین رخداد تبلور جدایشی در سنگ‌های لار است.    
متن کامل [PDF 2359 kb]   (278 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/3/12 | پذیرش: 1398/3/12 | انتشار: 1398/3/12

فهرست منابع
1. [1] Dong P., "Halogen-element (F, Cl, and Br) behavior in apatites, scapolite, and sodalite: an experimental investigation with field applications", Ph.D. Thesis, University of Saskatchewan (2005).
2. [2] Pan Y., Fleet M. E., "Compositions of the apatite group minerals; substitution mechanisms and controlling factors ", In: Kohn M. J., Rakovan J., Hughes J. M., (Eds) "Phosphates; geochemical, geobiological, and materials importance", Reviews in Mineralogy and Geochemistry 48 (2002) 13-49. [DOI:10.1515/9781501509636-005]
3. [3] Zhu C., Sverjensky D. A., "F-Cl-OH partitioning between biotite and apatite", Geochimica et Cosmochimica Acta 56 (1992) 3435-3467. [DOI:10.1016/0016-7037(92)90390-5]
4. [4] Pan Y., "Scapolite in skarn deposits: Petrogenetic and geochemical significance", In: Lentz D. R., (Eds), "Mineralized Intrusion-Related Skarn Systems", Mineralogical Association of Canada Short Course Series 26 (1998) 69-109.
5. [5] Mathez E. A., Webster J. D., "Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid", Geochimica et Cosmochimica Acta 69 (2005) 1275-1286. [DOI:10.1016/j.gca.2004.08.035]
6. [6] Teiber H., Marks M. A., Wenzel T., Siebel W., Altherr R., Markl G., "The distribution of halogens (F, Cl, Br) in granitoid rocks", Chemical Geology 374 (2014) 92-109. [DOI:10.1016/j.chemgeo.2014.03.006]
7. [7] O'Reilly S. Y., Griffin W. L., "Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle", Lithos 53 (2000) 217-232. [DOI:10.1016/S0024-4937(00)00026-8]
8. [8] Doherty A. J., Webster J. D., Goldoff B. A., Piccoli P. M., "Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850-950 °C", Chemical Geology 384 (2014) 94-109. [DOI:10.1016/j.chemgeo.2014.06.023]
9. [9] Cao M., Li G., Qin K., Seitmuratova E. Y., Liu Y., "Major and trace element characteristics of apatite in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization", Resource Geology 62 (2012) 63-83. [DOI:10.1111/j.1751-3928.2011.00180.x]
10. [10] Channer D. M. De R., de Ronde C. E. J., Spooner E. T. C., "The Cl-Br-I composition of - 3.23 Ga modified seawater; implications for the geological evolution of ocean halide chemistry", Earth and Planetary Science Letters 150 (1997) 325-335. [DOI:10.1016/S0012-821X(97)00101-5]
11. [11] Sha L. K., Chappell B. W., "Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis", Geochimica et Cosmochimica Acta 63 (1999) 3861-3881. [DOI:10.1016/S0016-7037(99)00210-0]
12. [12] Belousova E. A., Griffin W. L., O'Reilly S. Y., Fisher N. I., "Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type", Journal of Geochemical Exploration 76 (2002) 45-69. [DOI:10.1016/S0375-6742(02)00204-2]
13. [13] Aiuppa A., Baker D. R., Webster J. D., "Halogens in volcanic systems", Chemical Geology 263 (2009) 1-18. [DOI:10.1016/j.chemgeo.2008.10.005]
14. [14] Pyle D. M., Mather T. A., "Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review", Chemical Geology 263 (2009) 110-121. [DOI:10.1016/j.chemgeo.2008.11.013]
15. [15] Chance P., "Petrogenesis of a low-Ti, potassic suite: Kuh-e Lar caldera subsidence complex, eastern Iran", M.Sc. Thesis, University of Western Ontario (1981).
16. [16] Bagheri S., Bakhshi M.R., "Investigation of north Zahedan magmatism and its relation to ore genesis", Published Research Report, University of Sistan and Baluchestan (2001).
17. [17] Ghafari-Bijar S., "Geochemistry of potassic mafic rocks in the Lar complex, north of Zahedan, east of Iran", M.Sc. Thesis, University of Sistan and Baluchestan (2009).
18. [18] Farokh-Nezhad M., "Geochemical characterization of potassic mafic rocks, monzonites and syenites from Lar complex, eastern Iran", M.Sc. Thesis, University of Sistan and Baluchestan (2011).
19. [19] Moradi R., "Geochemistry of the Lar Cu and Mo deposit, north of Zahedan", Ph.D. Thesis, University of Sistan and Baluchestan (2016).
20. [20] Moradi R., Boomeri M., Bagheri S., Nakashima K., "Mineral chemistry of igneous rocks in the Lar Cu-Mo prospect, southeastern part of Iran: implications for P, T, and ƒO2", Turkish Journal of Earth Science 25 (2016) 1-16. [DOI:10.3906/yer-1501-37]
21. [21] Stöcklin J., "Structural history and tectonics of Iran, a review", American Association of Petroleum Geologists Bulletin 52 (1968) 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
22. [22] Camp V. E., Griffis R. J., "Character, genesis and tectonic setting of igneous rocks in the Sistan Suture Zone, eastern Iran", Lithos 15 (1982) 221-239. [DOI:10.1016/0024-4937(82)90014-7]
23. [23] Chu M. F., Wang K. L., Griffin W. L., Chuang S. L., O'Reilly S. Y., Pearson N. J., Iizuka Y., "Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids", Journal of Petrology 50 (2009) 1829-1855. [DOI:10.1093/petrology/egp054]
24. [24] Broderick C. A., Streck M. J., Halter W. E., "Sulfur-rich apatites in silicic, calc-alkaline magmas: inherited or not?" American Geophysical ::union::, Fall Meeting (2007) V11B-0592.
25. [25] Imai A., Listanco E. L., Fujii T., "Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt. Pinatubo, Philippines", Geology 21 (1993) 699-702. https://doi.org/10.1130/0091-7613(1993)021<0699:PASISO>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
26. [26] Parat F., Holtz F., Streck M. J., "Sulfur-bearing magmatic accessory minerals", Reviews in Mineralogy and Geochemistry 73 (2011) 285-314. [DOI:10.2138/rmg.2011.73.10]
27. [27] Bouzari F., Hart C. J. R., Bissig T., Barker S., "Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits", Economic Geology 111 (2016) 1397-1410. [DOI:10.2113/econgeo.111.6.1397]
28. [28] Chappell B. W., White A. J. R., "I- and S-type granites in the Lachlan Fold Belt", Journal of Earth Science 83 (1992) 1-26. [DOI:10.1130/SPE272-p1]
29. [29] Nash W. P., "Phosphate minerals in terrestrial igneous and metamorphic rocks", In: Nriagu J. O., Moore P. B., (Eds), "Phosphate minerals", Springer-Verlag (1984) 215-241. [DOI:10.1007/978-3-642-61736-2_6]
30. [30] Wang L. X., Marks M. A. W., Keller J., Markl G., "Halogen variations in alkaline rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br behavior during magmatic processes", Chemical Geology 380 (2014) 133-144. [DOI:10.1016/j.chemgeo.2014.05.003]
31. [31] Webster J. D., "Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt: Implications for mineralizing hydrothermal fluids in F-rich granitic systems", Contributions to mineralogy and petrology 104 (1990) 424-438. [DOI:10.1007/BF01575620]
32. [32] Piccoli P., Candela P., "Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tu¤ (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas", American Journal of Sciences 294 (1994) 92Ð135. [DOI:10.2475/ajs.294.1.92]
33. [33] Watson E. B., "Apatite saturation in basic to intermediate magmas", Geophysical Research Letters 6 (1979) 937-940. [DOI:10.1029/GL006i012p00937]
34. [34] Hammouda T., Chantel J., Devidal, J. L., "Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure", Geochimica et Cosmochimica Acta 74 (2010) 7220-7235. [DOI:10.1016/j.gca.2010.09.032]
35. [35] Ludington S., "The biotite-apatite geothermometer revisited", American Mineralogist 63 (1978) 551-553.
36. [36] Sallet R., "Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid", Lithos 50 (2000) 241-253. [DOI:10.1016/S0024-4937(99)00036-5]
37. [37] Stormer J. C., Carmichael I. S. E., "Fluoride-Hydroxyl exchange in apatite and biotite: a potential igneous geothermometer", Contributions to Mineralogy and Petrology 31 (1971) 121-131. [DOI:10.1007/BF00373455]
38. [38] Munoz J. L., Ludington S. D., "Fluoride-Hydroxyl exchange in biotite", American Journal of Science 274 (1974) 396-413. [DOI:10.2475/ajs.274.4.396]
39. [39] Belvin P. L., "Redox and compositional parameters for interpreting the granitoid 726 metallogeny of Eastern Australia: Implications for gold-rich ore systems", Resource Geology 54 (2004) 727 241-252. [DOI:10.1111/j.1751-3928.2004.tb00205.x]
40. [40] Miles A. J., Graham C. M., Hawkesworth C. J., Gillespie M. R., Hinton R. W., Bromiley G. D., EMMAC., "Apatite: A new redox 1 proxy for silicic magmas?",. Geochimica et Cosmochimica Acta (2014) 1-54. [DOI:10.1016/j.gca.2014.01.040]
41. [41] Peng G., Luhr, J. F., McGee J. J., "Factors controlling sulfur concentrations in volcanic apatite", American Mineralogist 82 (1997) 1210-1224. [DOI:10.2138/am-1997-11-1217]
42. [42] McArthur J. M., "Systematic variations in the contents of Na, Sr, CO3, and SO4 in marine carbonate-fluorapatite and their relation to weatherin", Chemical Geology 21 (1978) 89-112. [DOI:10.1016/0009-2541(78)90008-6]
43. [43] McCubbin F. M., Elardo S. M., Shearer, C. K., Smirnov A., Hauri E. H., Draper D. S., "A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry", Meteoritics and Planetary Science 48 (2013) 819-853. [DOI:10.1111/maps.12095]
44. [44] Xie Z., Li Q. Z., Chen J. F., Gao T. S., "The geochemical characteristics of the early-Cretaceous volcanics in Luzong Region and Their Source Significances", Geological Journal of China Universities 13 (2007) 235-245.
45. [45] Straub S. M., Layne G. D., "The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones", Geochimica et Cosmochimica Acta 67 (2003) 4179-4203. [DOI:10.1016/S0016-7037(03)00307-7]
46. [46] Stelling J., Botcharnikov R. E., Beermann O., Nowak M., "Solubility of H2O- and Chlorine-bearing fluids in basaltic melt of Mount Etna at T=1050-1250 °C and P=200 MPa", Chemical Geology 256 (2008) 101-109. [DOI:10.1016/j.chemgeo.2008.04.009]
47. [47] Rudnick R. L., Gao S., "Composition of the continental crust", Treatise on geochemistry 3 (2004) 1-64. [DOI:10.1016/B0-08-043751-6/03016-4]
48. [48] Michael P. J., Cornell W. C., "Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts", Journal of Geophysical Research 103 (1998) 18325-18356. [DOI:10.1029/98JB00791]
49. [49] Rowe M. C., Lassiter J. C., "Chlorine enrichment in central Rio Grande Rift basaltic melt inclusions: Evidence for subduction modification of the lithospheric mantle", Geology 37 (2009) 439-442. [DOI:10.1130/G25530A.1]
50. [50] Tang M., Wang X-L., Xu X. S., Zhu C., Cheng T., Yu Y., "Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf-Nd isotopic decoupling", Gondwana Research 21 (2012) 266-280. [DOI:10.1016/j.gr.2011.05.009]
51. [51] Mao M., Rukhlov A. S., Rowins S. M., Spence S. J., Coogan L.A., "Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration", Economic Geology 111 (2016) 1187-1222. [DOI:10.2113/econgeo.111.5.1187]
52. [52] Willmore C. C., Boudreau A. E., Kruger F. J., "The halogen geochemistry of the Bushveld complex, republic of South Africa: implications for chalcophile element distribution in the lower and critical zone", Journal of petrology 41 (2000) 1517-1539. [DOI:10.1093/petrology/41.10.1517]
53. [53] Webster J. D., Piccoli P. M., "Magmatic Apatite: A Powerful, Yet Deceptive, Mineral", Elements 11 (2015) 177-182. [DOI:10.2113/gselements.11.3.177]
54. [54] Nedachi M., "Chlorine and fluorine contents of rock-forming minerals of the Neogene granitic rocks in Kyushu, Japan", Mining Geology 8 (1980) 39-48.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb