Volume 27, Issue 2 (7-2019)                   www.ijcm.ir 2019, 27(2): 281-294 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Boomeri M, Bagheri S. Mineral chemistry of apatite in the Lar igneous complex, North of Zahedan. www.ijcm.ir 2019; 27 (2) :281-294
URL: http://ijcm.ir/article-1-1265-en.html
Abstract:   (2816 Views)
The Lar igneous complex (LIC) is located in the Sistan Suture Zone. The igneous rocks occur as stock, dike, lava and pyroclastic. As a result of hydrothermal fluids, Cu-Mo mineralization was formed in the stocks. Apatite is one of the most abundant accessory minerals in the igneous rocks that occurs as prismatic and brecciated. EPMA data indicate that apatites are fluorapatite in composition with low contents of chlorine indicating they were equilibrated with a relatively hydrous and oxidized melt/fluid. The mentioned melt/fluid fall in the field of the worldwide mineralized systems. The low chlorine contents of the apatites and high-K (shoshonitic) character of their host rocks indicate Cl–K decoupling of the primary magma due to involvement of dehydrated sediments in the deep lithospheric mantle source and occurrence of fractional crystallization.
Full-Text [PDF 115 kb]   (830 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Dong P., "Halogen-element (F, Cl, and Br) behavior in apatites, scapolite, and sodalite: an experimental investigation with field applications", Ph.D. Thesis, University of Saskatchewan (2005).
2. [2] Pan Y., Fleet M. E., "Compositions of the apatite group minerals; substitution mechanisms and controlling factors ", In: Kohn M. J., Rakovan J., Hughes J. M., (Eds) "Phosphates; geochemical, geobiological, and materials importance", Reviews in Mineralogy and Geochemistry 48 (2002) 13-49. [DOI:10.1515/9781501509636-005]
3. [3] Zhu C., Sverjensky D. A., "F-Cl-OH partitioning between biotite and apatite", Geochimica et Cosmochimica Acta 56 (1992) 3435-3467. [DOI:10.1016/0016-7037(92)90390-5]
4. [4] Pan Y., "Scapolite in skarn deposits: Petrogenetic and geochemical significance", In: Lentz D. R., (Eds), "Mineralized Intrusion-Related Skarn Systems", Mineralogical Association of Canada Short Course Series 26 (1998) 69-109.
5. [5] Mathez E. A., Webster J. D., "Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid", Geochimica et Cosmochimica Acta 69 (2005) 1275-1286. [DOI:10.1016/j.gca.2004.08.035]
6. [6] Teiber H., Marks M. A., Wenzel T., Siebel W., Altherr R., Markl G., "The distribution of halogens (F, Cl, Br) in granitoid rocks", Chemical Geology 374 (2014) 92-109. [DOI:10.1016/j.chemgeo.2014.03.006]
7. [7] O'Reilly S. Y., Griffin W. L., "Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle", Lithos 53 (2000) 217-232. [DOI:10.1016/S0024-4937(00)00026-8]
8. [8] Doherty A. J., Webster J. D., Goldoff B. A., Piccoli P. M., "Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850-950 °C", Chemical Geology 384 (2014) 94-109. [DOI:10.1016/j.chemgeo.2014.06.023]
9. [9] Cao M., Li G., Qin K., Seitmuratova E. Y., Liu Y., "Major and trace element characteristics of apatite in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization", Resource Geology 62 (2012) 63-83. [DOI:10.1111/j.1751-3928.2011.00180.x]
10. [10] Channer D. M. De R., de Ronde C. E. J., Spooner E. T. C., "The Cl-Br-I composition of - 3.23 Ga modified seawater; implications for the geological evolution of ocean halide chemistry", Earth and Planetary Science Letters 150 (1997) 325-335. [DOI:10.1016/S0012-821X(97)00101-5]
11. [11] Sha L. K., Chappell B. W., "Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis", Geochimica et Cosmochimica Acta 63 (1999) 3861-3881. [DOI:10.1016/S0016-7037(99)00210-0]
12. [12] Belousova E. A., Griffin W. L., O'Reilly S. Y., Fisher N. I., "Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type", Journal of Geochemical Exploration 76 (2002) 45-69. [DOI:10.1016/S0375-6742(02)00204-2]
13. [13] Aiuppa A., Baker D. R., Webster J. D., "Halogens in volcanic systems", Chemical Geology 263 (2009) 1-18. [DOI:10.1016/j.chemgeo.2008.10.005]
14. [14] Pyle D. M., Mather T. A., "Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review", Chemical Geology 263 (2009) 110-121. [DOI:10.1016/j.chemgeo.2008.11.013]
15. [15] Chance P., "Petrogenesis of a low-Ti, potassic suite: Kuh-e Lar caldera subsidence complex, eastern Iran", M.Sc. Thesis, University of Western Ontario (1981).
16. [16] Bagheri S., Bakhshi M.R., "Investigation of north Zahedan magmatism and its relation to ore genesis", Published Research Report, University of Sistan and Baluchestan (2001).
17. [17] Ghafari-Bijar S., "Geochemistry of potassic mafic rocks in the Lar complex, north of Zahedan, east of Iran", M.Sc. Thesis, University of Sistan and Baluchestan (2009).
18. [18] Farokh-Nezhad M., "Geochemical characterization of potassic mafic rocks, monzonites and syenites from Lar complex, eastern Iran", M.Sc. Thesis, University of Sistan and Baluchestan (2011).
19. [19] Moradi R., "Geochemistry of the Lar Cu and Mo deposit, north of Zahedan", Ph.D. Thesis, University of Sistan and Baluchestan (2016).
20. [20] Moradi R., Boomeri M., Bagheri S., Nakashima K., "Mineral chemistry of igneous rocks in the Lar Cu-Mo prospect, southeastern part of Iran: implications for P, T, and ƒO2", Turkish Journal of Earth Science 25 (2016) 1-16. [DOI:10.3906/yer-1501-37]
21. [21] Stöcklin J., "Structural history and tectonics of Iran, a review", American Association of Petroleum Geologists Bulletin 52 (1968) 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
22. [22] Camp V. E., Griffis R. J., "Character, genesis and tectonic setting of igneous rocks in the Sistan Suture Zone, eastern Iran", Lithos 15 (1982) 221-239. [DOI:10.1016/0024-4937(82)90014-7]
23. [23] Chu M. F., Wang K. L., Griffin W. L., Chuang S. L., O'Reilly S. Y., Pearson N. J., Iizuka Y., "Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids", Journal of Petrology 50 (2009) 1829-1855. [DOI:10.1093/petrology/egp054]
24. [24] Broderick C. A., Streck M. J., Halter W. E., "Sulfur-rich apatites in silicic, calc-alkaline magmas: inherited or not?" American Geophysical ::union::, Fall Meeting (2007) V11B-0592.
25. [25] Imai A., Listanco E. L., Fujii T., "Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt. Pinatubo, Philippines", Geology 21 (1993) 699-702. https://doi.org/10.1130/0091-7613(1993)021<0699:PASISO>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
26. [26] Parat F., Holtz F., Streck M. J., "Sulfur-bearing magmatic accessory minerals", Reviews in Mineralogy and Geochemistry 73 (2011) 285-314. [DOI:10.2138/rmg.2011.73.10]
27. [27] Bouzari F., Hart C. J. R., Bissig T., Barker S., "Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits", Economic Geology 111 (2016) 1397-1410. [DOI:10.2113/econgeo.111.6.1397]
28. [28] Chappell B. W., White A. J. R., "I- and S-type granites in the Lachlan Fold Belt", Journal of Earth Science 83 (1992) 1-26. [DOI:10.1130/SPE272-p1]
29. [29] Nash W. P., "Phosphate minerals in terrestrial igneous and metamorphic rocks", In: Nriagu J. O., Moore P. B., (Eds), "Phosphate minerals", Springer-Verlag (1984) 215-241. [DOI:10.1007/978-3-642-61736-2_6]
30. [30] Wang L. X., Marks M. A. W., Keller J., Markl G., "Halogen variations in alkaline rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br behavior during magmatic processes", Chemical Geology 380 (2014) 133-144. [DOI:10.1016/j.chemgeo.2014.05.003]
31. [31] Webster J. D., "Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt: Implications for mineralizing hydrothermal fluids in F-rich granitic systems", Contributions to mineralogy and petrology 104 (1990) 424-438. [DOI:10.1007/BF01575620]
32. [32] Piccoli P., Candela P., "Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tu¤ (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas", American Journal of Sciences 294 (1994) 92Ð135. [DOI:10.2475/ajs.294.1.92]
33. [33] Watson E. B., "Apatite saturation in basic to intermediate magmas", Geophysical Research Letters 6 (1979) 937-940. [DOI:10.1029/GL006i012p00937]
34. [34] Hammouda T., Chantel J., Devidal, J. L., "Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure", Geochimica et Cosmochimica Acta 74 (2010) 7220-7235. [DOI:10.1016/j.gca.2010.09.032]
35. [35] Ludington S., "The biotite-apatite geothermometer revisited", American Mineralogist 63 (1978) 551-553.
36. [36] Sallet R., "Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid", Lithos 50 (2000) 241-253. [DOI:10.1016/S0024-4937(99)00036-5]
37. [37] Stormer J. C., Carmichael I. S. E., "Fluoride-Hydroxyl exchange in apatite and biotite: a potential igneous geothermometer", Contributions to Mineralogy and Petrology 31 (1971) 121-131. [DOI:10.1007/BF00373455]
38. [38] Munoz J. L., Ludington S. D., "Fluoride-Hydroxyl exchange in biotite", American Journal of Science 274 (1974) 396-413. [DOI:10.2475/ajs.274.4.396]
39. [39] Belvin P. L., "Redox and compositional parameters for interpreting the granitoid 726 metallogeny of Eastern Australia: Implications for gold-rich ore systems", Resource Geology 54 (2004) 727 241-252. [DOI:10.1111/j.1751-3928.2004.tb00205.x]
40. [40] Miles A. J., Graham C. M., Hawkesworth C. J., Gillespie M. R., Hinton R. W., Bromiley G. D., EMMAC., "Apatite: A new redox 1 proxy for silicic magmas?",. Geochimica et Cosmochimica Acta (2014) 1-54. [DOI:10.1016/j.gca.2014.01.040]
41. [41] Peng G., Luhr, J. F., McGee J. J., "Factors controlling sulfur concentrations in volcanic apatite", American Mineralogist 82 (1997) 1210-1224. [DOI:10.2138/am-1997-11-1217]
42. [42] McArthur J. M., "Systematic variations in the contents of Na, Sr, CO3, and SO4 in marine carbonate-fluorapatite and their relation to weatherin", Chemical Geology 21 (1978) 89-112. [DOI:10.1016/0009-2541(78)90008-6]
43. [43] McCubbin F. M., Elardo S. M., Shearer, C. K., Smirnov A., Hauri E. H., Draper D. S., "A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry", Meteoritics and Planetary Science 48 (2013) 819-853. [DOI:10.1111/maps.12095]
44. [44] Xie Z., Li Q. Z., Chen J. F., Gao T. S., "The geochemical characteristics of the early-Cretaceous volcanics in Luzong Region and Their Source Significances", Geological Journal of China Universities 13 (2007) 235-245.
45. [45] Straub S. M., Layne G. D., "The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones", Geochimica et Cosmochimica Acta 67 (2003) 4179-4203. [DOI:10.1016/S0016-7037(03)00307-7]
46. [46] Stelling J., Botcharnikov R. E., Beermann O., Nowak M., "Solubility of H2O- and Chlorine-bearing fluids in basaltic melt of Mount Etna at T=1050-1250 °C and P=200 MPa", Chemical Geology 256 (2008) 101-109. [DOI:10.1016/j.chemgeo.2008.04.009]
47. [47] Rudnick R. L., Gao S., "Composition of the continental crust", Treatise on geochemistry 3 (2004) 1-64. [DOI:10.1016/B0-08-043751-6/03016-4]
48. [48] Michael P. J., Cornell W. C., "Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts", Journal of Geophysical Research 103 (1998) 18325-18356. [DOI:10.1029/98JB00791]
49. [49] Rowe M. C., Lassiter J. C., "Chlorine enrichment in central Rio Grande Rift basaltic melt inclusions: Evidence for subduction modification of the lithospheric mantle", Geology 37 (2009) 439-442. [DOI:10.1130/G25530A.1]
50. [50] Tang M., Wang X-L., Xu X. S., Zhu C., Cheng T., Yu Y., "Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf-Nd isotopic decoupling", Gondwana Research 21 (2012) 266-280. [DOI:10.1016/j.gr.2011.05.009]
51. [51] Mao M., Rukhlov A. S., Rowins S. M., Spence S. J., Coogan L.A., "Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration", Economic Geology 111 (2016) 1187-1222. [DOI:10.2113/econgeo.111.5.1187]
52. [52] Willmore C. C., Boudreau A. E., Kruger F. J., "The halogen geochemistry of the Bushveld complex, republic of South Africa: implications for chalcophile element distribution in the lower and critical zone", Journal of petrology 41 (2000) 1517-1539. [DOI:10.1093/petrology/41.10.1517]
53. [53] Webster J. D., Piccoli P. M., "Magmatic Apatite: A Powerful, Yet Deceptive, Mineral", Elements 11 (2015) 177-182. [DOI:10.2113/gselements.11.3.177]
54. [54] Nedachi M., "Chlorine and fluorine contents of rock-forming minerals of the Neogene granitic rocks in Kyushu, Japan", Mining Geology 8 (1980) 39-48.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb