Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 75-90 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nakhaei M, Mazaheri S A, Karimpour M H, Mohammadi S S. Investigation of skarn zoning, minerals chemistry and conditions for formation of exoskarn in Bisheh iron deposit (south of Birjand). www.ijcm.ir 2023; 31 (1) :75-90
URL: http://ijcm.ir/article-1-1728-en.html
1- Birjand university of technology
2- Ferdowsi University of Mashhad
3- University of Birjand
Abstract:   (567 Views)
In the Bisheh area, intrusion of hornblende porphyry diorite in limestone and tuffs rocks caused skarn formation. Garnet and pyroxene are the most abundant minerals in prograde exoskarn, respectively. In retrograde processes, epidote, tremolite-actinolite, quartz, calcite and opaque minerals such as magnetite were formed. Electron microprobe analysis shows that the studied garnets are andradite-grossular solid solution. Studied garnets show variations in Fe3+/Al ratio that is related to changing conditions during growth. Studied pyroxenes are very close to diopside end member and lowest diopside content is 64.97%. Based on garnet and pyroxene composition, the average  logarithm of oxygen fugacity is calculated -20.18 megapascal. The presence of magnetite, pyrite and pyrrhotite along with calcite and quartz show that metasomatism fluids probably had ƒS2~10-7 and temperature < 430°C.  
Full-Text [PDF 5645 kb]   (193 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Burt D.M., "Skarn deposits-historical bibliography through 1970", Economic Geology 77 (1982) 755-763. [DOI:10.2113/gsecongeo.77.4.755]
2. [2] Behrouzi A., Nazer N. Kh., "Geological Map of Basiran, 1:100000", Geological Survey and Mineral Exploration of Iran, Tehran (1992).
3. [3] Berberian M., King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
4. [4] Massawe R. J., Lentz D. R., "Skarn formation and Cu-Ag mineralization in the McKenzie Gulch area, northern New Brunswick, Canada: Implication for the applications of mineral chemistry in exploration for porphyry copper and skarn deposits", Journal of Geochemical Exploration (2022) 106965. [DOI:10.1016/j.gexplo.2022.106965]
5. [5] Xie S., Yang L., He W., Gao X., "Garnet trace element geochemistry of Yangla Cu deposit in NW Yunnan, China: Implications for multistage ore-fluid activities in skarn system", Ore Geology Reviews (2021) 104662. [DOI:10.1016/j.oregeorev.2021.104662]
6. [6] Whitney D., Evans B., "Abbreviations for names of rock-forming minerals", American Mineralogist 95(1) (2010) 185-187. [DOI:10.2138/am.2010.3371]
7. [7] Nakhaei M., "Skarn mineralogy, geochemical exploration, magnetometry, dating, Sm-Nd and Rb-Sr isotopic studies of intrusive bodies in Bisheh iron mineralization area, Birjand", Ph.D. thesis, Ferdowsi University of Mashhad (2014) 388p.
8. [8] Collins L. G., "Hydrothermal differentiation", Theophrastus Publication, Athens (1988).
9. [9] Baxter E. F., Caddick M. J., Ague J. J., "Garnet: Common mineral, uncommonly useful", Elements 9(6) (2013) 415-419. [DOI:10.2113/gselements.9.6.415]
10. [10] Ranjbar S., Tabatabaei Manesh S. M., Mackizadeh M. A., Tabatabaei S. H., Parfenova O. V., "Geochemistry of major and rare earth elements in garnet of the Kal-e Kafi skarn, Anarak Area, Central Iran: Constraints on processes in a hydrothermal system", Geochemistry International 54(5) (2016) 423-438. [DOI:10.1134/S0016702916050098]
11. [11] Gaspar M., Knaack C., Meinert L. D., Moretti R., "REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit", Geochimica et cosmochimica acta, 72(1) (2008)185-205. [DOI:10.1016/j.gca.2007.09.033]
12. [12] Smith M. P., Henderson P., Jeffries T. E. R., Long J., Williams C. T., "The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system", Journal of Petrology, 45(3) (2004) 457-484. [DOI:10.1093/petrology/egg087]
13. [13] García‐Casco A., Torres‐Roldán R. L., Millán G., Monié P., Schneider J., "Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction?", Journal of Metamorphic Geology 20(6) (2002) 581-598. [DOI:10.1046/j.1525-1314.2002.00390.x]
14. [14] Jamtveit B., Andersen T. B., "Morphological instabilities during rapid growth of metamorphic garnets", Physics and Chemistry of Minerals 19(3) (1992) 176-184. [DOI:10.1007/BF00202106]
15. [15] Spear F. S., "Metamorphic phase equilibria and pressure-temperature-time paths", Mineralogical Society of America Monograph (1993) 352-356.
16. [16] Fei X., Zhang Z., Cheng Z., Santosh M., "Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing'an Range, NE China", American Mineralogist: Journal of Earth and Planetary Materials 104(10) (2019) 1455-1468. [DOI:10.2138/am-2019-6968]
17. [17] Holten T., Jamtveit B., Meakin P., Cortini M., Blundy J., Austrheim H., "Statistical characteristics and origin of oscillatory zoning in crystals", American Mineralogist 82(5-6) (1997) 596-606. [DOI:10.2138/am-1997-5-619]
18. [18] Ortoleva P. J., "Geochemical Self-Organization", Oxford University Press (1994) New York.
19. [19] Jamtveit B., Ragnarsdottir K. V., Wood B. J., "On the origin of zoned grossular-andradite garnets in hydrothermal systems", European Journal of Mineralogy (1995) 7(6). [DOI:10.1127/ejm/7/6/1399]
20. [20] Ginibre C., Kronz A., WoÈrner G., "High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning", Contributions to Mineralogy and Petrology 142(4) (2002) 436-448. [DOI:10.1007/s004100100298]
21. [21] Ciobanu C. L., Cook N. J., "Skarn textures and a case study: The Ocna de Fier-Dognecea orefield, Banat, Romania", Ore Geology Reviews 24(3-4) (2004) 315-370. [DOI:10.1016/j.oregeorev.2003.04.002]
22. [22] Streck M. J., "Mineral textures and zoning as evidence for open system processes", Reviews in Mineralogy and Geochemistry 69(1) (2008) 595-622. [DOI:10.2138/rmg.2008.69.15]
23. [23] Masoudi F., Mehrabi B., Farazdel F., "Type of garnet zoning in skarns of Ghohroud intrusion, south of Kashan", Iranian Journal of Crystallography and Mineralogy 13(1) (2005) 43-61.
24. [24] Zhang Z., Saxena S. K., "Thermodynamic properties of andradite and application to skarn with coexisting andradite and hedenbergite", Contributions to Mineralogy and Petrology 107(2) (1991) 255-263. [DOI:10.1007/BF00310711]
25. [25] Taylor B. E., Liou J. G., "The low-temperature stability of andradite in COH fluids", American Mineralogist 63(3-4) (1978) 378-393.
26. [26] Jamtveit B., Hervig R. L., "Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals", Science 263(5146) (1994) 505-508. [DOI:10.1126/science.263.5146.505]
27. [27] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock- forming minerals", second ed. Longman Scientific and Technical, London (1992) 696p.
28. [28] Kwak T. A. P., Brown W. M., Abeysinghe P. B., Tan T. H., "Fe solubilities in very saline hydrothermal fluids: Their relation to zoning in some ore deposits", Economic Geology 81(2) (1986) 447-465. [DOI:10.2113/gsecongeo.81.2.447]
29. [29] Bowman J.R., Essene E.J., "Contact skarn formation at Elkhorn, Montana: I, P-T component activity conditions of early skarn formation", American Journal of science 284(1984)597-650. [DOI:10.2475/ajs.284.6.597]
30. [30] Nakano T., Yoshino T., Shimazaki H., Shimizu M., "Pyroxene composition as an indicator in the classification of skarn deposits", Economic Geology 89(7) (1994) 1567-1580. [DOI:10.2113/gsecongeo.89.7.1567]
31. [31] Morimoto N., "Nomenclature of pyroxenes", American Mineralogist 73(1988) 1123-1133
32. [32] Meinert L.D., "Skarns and skarn deposits", Geoscience Canada 19 (1992)145-162.
33. [33] Sherafat S., Mackizadeh M. A., "Mineralogy and Genesis of Joveinan Iron Skarn (Cenozoic Magmatic Arc, North of Isfahan)", Iranian Journal of Petrology 8(2017) 89-108.
34. [34] Mohammadi S. S., Chung S. L., Nakhaei M., "Thermobarometry of quartz diorite porphyry bodies and investigation of genesis of related skarn using mineral chemistry data in Tighanab area, southeast of Sarbisheh (east of Iran)", Iranian Journal of Petrology 11(2021) 1-28.
35. [35] Akbarpour A., Khalatbari Jafari M., "Petrography and geochemistry of Ebrahim-Abad iron ore deposit (northwest Divandere, Kurdistan Province)", Iranian Journal of Petrology 11(2021) 57-74. [DOI:10.52547/esrj.11.4.87]
36. [36] Einaudi M. T., "General features and origin of skarns associated with porphyry copper plutons, southwestern North America", In: Titley S. R. (Ed.), Advances in geology of the porphyry copper deposits, southwestern North America, University of Arizona press (1982) 185-210.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb