Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 31-44 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

asadi A, Ghasemi H, mobasheri M. Olivine chemistry as a petrogenetic indicator for origin and formation conditions of Sargaz-Abshur ultramafic-mafic intrusion, SE Baft, Kerman. www.ijcm.ir 2023; 31 (1) :31-44
URL: http://ijcm.ir/article-1-1726-en.html
1- Shahrood University of Technology
Abstract:   (802 Views)
The alpine ultramafic-mafic Sargaz-Abshour complex in the SW of Baft, as a part of the ultramafic-mafic/ophiolitic intrusives of the Hajiabad-Esfandagheh region, comprises of tectonite units (foliated harzburgite and porphyroclastic dunite), layered ultramafic-mafics, large isotropic gabbro bodies and scattered microgabroic-diabase dykes. In this complex, olivines are the main mafic residual phase in porphyroclastic dunites and harzburgites, as well as magmatic cumulate phase in chromitites, ultramafic and layered mafics. In most cases, composition of olivine is chrysolite and in chromitite is forsterite. Their compositions are consistent with mantle peridotites, abyssal peridotites, alpine massives and magmatic cumulative series. Due to the refractory nature in porphyroclastic dunites and primitive crystal phases in chromite and layered cumulative dunites, percentage of forsterite content is high, and will reduced with the progress of differentiation in the mafic layered rocks. These changes may indicate the residual nature of olivine and evolution of Mg-rich mantle-derived magma. Different source and origin of magmas  have been compareable with other ultramafic-mafic complexes of Esfandagheh region and alpine ultramafic-mafic intrusions which distinct from ophiolites.
Full-Text [PDF 3456 kb]   (278 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Wang J., Su B.X., Robinson P.T., Xiao Y., Bai Y., Liu X., Sakyi P.A., Jing J.J., Chen C., Liang Z., Bao Z.A., "Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks", Lithos, 388-389, (2021) 106085. [DOI:10.1016/j.lithos.2021.106085]
2. [2] Hole M.J., 2018 "Mineralogical and geochemical evidence for polybaric fractional crystallization of continental flood basalts and implications for identification of peridotite and pyroxenite source lithologies", Earth-Sci. Rev. (2018) 176, 51-67. [DOI:10.1016/j.earscirev.2017.09.014]
3. [3] Azizan H., Naderi N., "DolatAbad Geological Quadrangle Map 1:100000", Geological Survey of Iran, Tehran (2007).
4. [4] Zamani P., Padashi S.M., "Pagodar Geological Quadrangle Map 1:100000", Geological Survey of Iran, Tehran (2018).
5. [5] Shafaii Moghadam H., Bröcker M., Griffin W.L., Li X.H, Chen R.X. and O'Reilly S.Y., " Subduction, high-P metamorphism and collision fingerprints in SW Iran: Constraints from zircon U-Pb and mica Rb-Sr geochronology", Geochemeistry, Geophysics, Geosystems, 18, (2017) 306-332. [DOI:10.1002/2016GC006585]
6. [6] Ghasemi H., "Petrology, geochemistry and origin of ore minerals in ultramafic-mafic Sikhoran complex, SE Iran", Ph.D Thesis, Tarbiat Modares University of Iran, (2000) 250p.
7. [7] Nicolas, A., "Structures of ophiolites and dynamics of oceanic lithosphere", Kluwer Academic Publishers, (1989) 367p. [DOI:10.1007/978-94-009-2374-4]
8. [8] Juteau T., Maury R., "The Oceanic Crust,from Accretion to Mantle Recycling", Springer, (1999) 390p.
9. [9] Sabzehei M., "Criteria for exploration of chromite deposits: Impressions of chromite deposits in Iran", 18th Earth Science Conference, Geological Survey of Iran, Tehran, (2000) 430-435.
10. [10] Benn K., Nicolas A., Reuber I., "Mantle-Crust transition zone and origin of wehrlitic magmas: Evidence from the Oman ophiolite", Tectonophysics, 151, (1988) 75-85. [DOI:10.1016/0040-1951(88)90241-7]
11. [11] Boudier F., Nicolas A., "Nature of the Moho transition zone in the Oman ophiolite", Journal of petrology, 36(3), (1995) 777-796. [DOI:10.1093/petrology/36.3.777]
12. [12] Hebert H., Laurent R., "Mineral chemistry of the plutonic section of the Troodos ophiolite: New constraints for genesis of arc-related ophiolites. In Malpas, J., Moores, E. M., Panayiotou, A., Xenophontos. C. (1990)(eds)Ophiolites Oceanic Crustal Analogues: proceeding of the symposium", Troodos, (1987) 149-163.
13. [13] Ozawa K., "Relationships between tectonite and cumulate in ophiolites: The Miyamori ultramafic complex, Kitakami Mountains, northest Japan", Lithos, 16, (1983) 1-16. [DOI:10.1016/0024-4937(83)90029-4]
14. [14] Sabzehei M., Ghasemi H., Juteau T., "Source of websterite dikes and related chromitites in Sikhoran Ultramafic-Mafic Complex, SE Iran", 18th Earth Science Conference, Geological Survey of Iran, Tehran, (2000) 199-206.
15. [15] Irvine T. N., "Terminology for layered intrusions", Journal of petrology, 23(2), (1982) 127-162. [DOI:10.1093/petrology/23.2.127-a]
16. [16] Elthon D., "Metamorphism in oceanic spreading centres. In Emiliani,C. (ed) The sea,The oceanic lithosphere", New York. John Wiley and Sons, 7, (1981) 285-303.
17. [17] Hunter R. H., "Texture development in cumulate rocks. In:Layered Intrusions", Elsevier Science, (1996). [DOI:10.1016/S0167-2894(96)80005-4]
18. [18] Nicolas A., Prinzhofer A., "Cumulative or residual origin for the transition zone in ophiolites: Structural evidence", Journal of petrology, 24(2), (1983) 188-206. [DOI:10.1093/petrology/24.2.188]
19. [19] Deer W. A., Howie R. A., Zussman J., "An introduction to the Rock Forming Minerals", England, Longman Scientific & Technical, New York, (1992).
20. [20] Cawthorn R.G., "Layered intrusions (Developments in Petrology 15)", Elsevier, (1996) 531p.
21. [21] Barnes S.J., Cruden A.R., Arndt N., Saumur B.R., "The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits", Ore Geology Reviews, 76, (2016) 296-316. [DOI:10.1016/j.oregeorev.2015.06.012]
22. [22] Siepierski L., Ferreira Filho C.F., "Magmatic structure and petrology of the Vermelho Complex, Carajás Mineral Province, Brazil: Evidence for magmatic processes at the lower portion of a mafic-ultramafic intrusion", Journal of South American Earth Sciences, (2020) 102700. [DOI:10.1016/j.jsames.2020.102700]
23. [23] Wager L.R., Brown G.M., Wadsworth W.J., "Types of igneous cumulates", Journal of Petrology, 1, (1960) 73-85. [DOI:10.1093/petrology/1.1.73]
24. [24] Latypov R.M., Chistyakova S.Y., Namur O., Barnes S., "Dynamics of evolving magma chambers: textural and chemical evolution of cumulates at the arrival of new liquidus phases", Earth-Science Reviews, 210, (2020) 103388. [DOI:10.1016/j.earscirev.2020.103388]
25. [25] Campbell I.H., "Fluid dynamic processes in basaltic magma chambers, in: Cawthorn, R.G., (Ed.), Layered Intrusions", Elsevier, (1996) 45-76. [DOI:10.1016/S0167-2894(96)80004-2]
26. [26] Holness M.B., Tegner C., Nielsen T.F., Stripp G., Morse S.A., "A textural record of solidification and cooling in the Skaergaard intrusion, East Greenland", Journal of Petrology, 48, (2007) 2359-2377. [DOI:10.1093/petrology/egm064]
27. [27] Latypov R.M., "Basal Reversals in Mafic Sills and Layered Intrusions. In: Charlier, B., Namur, O., Latypov, R., Tegner, C. (Eds.), Layered Intrusions" Elsevier, (2015) 259-294. [DOI:10.1007/978-94-017-9652-1_6]
28. [28] Naslund H.R., McBirney A.R., "Mechanisms of formation of igneous layering, in: Cawthorn, R.G., (Ed.), Layered intrusions Amsterdam" Elsevier, (1996) 1-43. [DOI:10.1016/S0167-2894(96)80003-0]
29. [29] Keiding, J. K., Trumbull, R. B., Veksler, I. V., Jerram, D. A., "On the significance of ultra-magnesian olivines in basaltic rocks", Geology, 39, (2011) 1095-1098. [DOI:10.1130/G32214.1]
30. [30] Trela J., Gazel E., Sobolev A. V., Moore L., Bizimis M., Jicha B., Batanova V. G., "The hottest lavas of the Phanerozoic and the survival of deep Archean reservoirs", Nature Geoscience, 10, (2017) 451-456. [DOI:10.1038/ngeo2954]
31. [31] Campbell I. H., "Large igneous provinces and the mantle plume", Elements, 1, (2005) 265-269. [DOI:10.2113/gselements.1.5.265]
32. [32] Nakamura Y., Ishibashi H., Yasuda A., Hokanishi N., Yamamoto J., "Ultra-magnesian olivine-bearing ultramafic lava blocks within Cenozoic accretionary sediments at Shizuoka, Japan: Implications for young, hot plume activity beneath the western Pacific Plate", Lithos, 324-325, (2019) 315-324. [DOI:10.1016/j.lithos.2018.11.009]
33. [33] Takahashi E., Uto K., Schilling J.G., "Primary magma compositions and Mg/Fe ratios of their mantle residues along mid-Atlantic ridge 29N to 73N. Technical Report, A9: Japan, Institute of Studies Earth's Interior", Okayama University Series (1987) 1-14.
34. [34] Borghini G., Rampone E., Crispini L., De Ferrari R., Godard M., "Origin and emplacement of ultramafic-mafic intrusions in the Erro-Tobbio mantle peridotite (Ligurian Alps, Italy)", Lithos 94, (2007) 210-229. [DOI:10.1016/j.lithos.2006.06.014]
35. [35] Warren J. M., Shimizu N., "CrypticVariations in Abyssal Peridotite Compositions: Evidence for Shallow-level Melt Infiltration in the Oceanic Lithosphere", Journal of Petrology, 51, (2010) 395-423. [DOI:10.1093/petrology/egp096]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb