Volume 29, Issue 1 (3-2021)                   www.ijcm.ir 2021, 29(1): 179-196 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miri Beydokhti, Almasi, Karimpour, Mazaheri. Mineralogy, alteration, geochemistry, and fluid inclusion studies of the Balazard Cu-Au prospect, southwest of Nehbandan. www.ijcm.ir. 2021; 29 (1) :179-196
URL: http://ijcm.ir/article-1-1593-en.html
1- Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Iran
2- Department of Geology, Faculty of Sciences, Lorestan University, Khoram Abad, Iran
Abstract:   (224 Views)
The Balazard prospecting area is located about 120 km southwest of Nehbandan city, Khorasan Jonoobi Province, in the central parts of Lut block volcano-plutonic belt.  The intrusion of a granitoid pluton into rhyolitic and andesitic rocks has led to alteration and mineralization. Hydrothermal alteration zones consist of argillic, sericite-argillic, silicic-argillic, propylitic, and advanced argillic. Sulfide and oxide mineralization occur as disseminated grains, veinlet, hydrothermal breccia and carbonate-silicic veins. The geochemical and radioisotope data are consistent with subduction related magmas that formed in an active continental margin, and these data suggesting a major interaction with upper crust during magma ascent. Microthermometric measurements of fluid inclusions yielded homogenization temperatures (Th) of 385–550 °C and moderate salinities of 7.1–21 wt% NaCl equivalent in Au bearing quartz vein, indicating the mixing of ore-forming fluids. Geology, mineralogy, alteration, fluid inclusions and geochemical studies all indicate that mineralization at Balazard area occur as both porphyry and high sulfidation epithermal systems. 
Full-Text [PDF 128 kb]   (82 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Arjmandzadeh R., Karimpour M. H., Mazaheri S. A., Santos J. F., Medina J. M., Homam S. M., "SrNd isotope geochemistry and petrogenesis of the Chah- Shaljami granitoids (Lut Block, Eastern Iran)″, Journal of Asian Earth Sciences 41 (2011) 283-296. [DOI:10.1016/j.jseaes.2011.02.014]
2. [2] Karimpour M.H., ″Comparison of Qaleh Zari Cu-Au-Ag deposit with other Iron Oxides Cu-Au (IOGC-Type) deposits and a new classification (in Persian) ″, Iranian Journal of Crystallography and Mineralogy 13(2005), 203-222.
3. [3] Haji Mirzajan H., Karimpour M.H., Malekzadeh Shafarodi A., Heidarian Shahri M.R., Hamouni S.J., ″Combining geological data, mineralization, geochemistry and IP / RS geophysical studies and geometric magnetometry of Rudgaz region, southeast of Gonabad, Khorasan Razavi province (in Persian)″, Economic geology 1 (2013), 117-136.
4. [4] Malekzadeh Shafarodi A., Karimpour M.H., ″Geology, mineralization and studies of fluids inclusions in House Raeis Pb-Zn-Cu , East of Iran(in Persian)″, Advanced Applied Geology 6(2012)63-73.
5. [5] Karimpour M.H., Malekzadeh Shafarodi A., Mazaheri S.A., Heidarian Shahri M.R., ″Magmatism and mineralization of copper, gold, tin and tungsten in Lut block(in Persian)″, 15th Iranian Conference on Crystallography and Mineralogy (2007), 604-598.
6. [6] Malekzadeh Shafarodi A., ″Geology, mineralization, alteration, geochemistry, interpretation of geophysical data, microthermometry, isotopic studies and determination of mineralization origin of Mahrabad and Khopik prospects, South Khorasan province (in Persian)″, PhD Thesis in Economic Geology, Ferdowsi University of Mashhad (2009), 600 p.
7. [7] Arjmandzadeh R., ″Mineralization studies, geochemistry, dating and determination of tectonomagmatic setting of intrusive plutons in Dehsalm and Chah Shaljami mineral index, Lut block, East of Iran(in Persian)″, PhD thesis in economic geology, Ferdowsi University of Mashhad (2011), 369 p.
8. [8] Arjmanzadeh R., Karimpour M.H., Santoz G.F., Mazaheri S.A., Medina j., Hamam S.M., ″Hydrothermal fluid evolution in different alteration- mineralization zones in Dehsalm porphyry system, Lut block, East Iran(in Persian)″, 2th Conference on Iranian Economic Geology Society, Lorestan University (2011).
9. [9] Karjo M., ″The primary exploration report of Mahour Cu deposit (in Persian)″, (2007) 270 P.
10. [10] Mirzaei Rayeni, R., Ahmadi A., Mirnejad H., ″Mineralogy and fluid inclusion studies in Mahour copper deposit, East of Lut block, central Iran (in Persian)″, Iranian Journal of Crystallography and Mineralogy 20 (2012), 307-318.
11. [11] Miri Beydokhti R., Karimpour M.H., Mazaheri S.A., ″Remote Sensing, alteration, mineralization and geochemistry at the Balazard Cu-Au prospecting areas, West of Nehbandan(in Persian)″, Iranian Journal of Crystallography and Mineralogy 22 (2013), 459-470.
12. [12] Akrami A., Naderi N., ″1:100000 gelogical map of Dehsalm″, Geological Survey of Iran (2005).
13. [13] Dela Roche H., Leterrier J., Grande Claude P., Marchal M., ″A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses its relationships and current nomenclature″, Chemical Geology 29 (1980) 183-210. [DOI:10.1016/0009-2541(80)90020-0]
14. [14] Rollinson H. R., ″Using Geochemical Data: Evaluation, Presentation, and Interpretation″, Longman Science and Technical (1993) 352 p.
15. [15] Maniar P. D., Piccoli P. M., ″Tectonic discrimination of granitoids″, Geological Society of America Bulletin 101 (1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
16. [16] Ross P.S., Bedard J. H., ″Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace element discrimination diagram″, Canadian Journal of Earth Sciences 46(2009), 823-829. [DOI:10.1139/E09-054]
17. [17] Peccerillo A., Taylor S. R., ″Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area (Northern Turkey)″, Contributions to mineralogy and petrology 58 (1976) 63-81. [DOI:10.1007/BF00384745]
18. [18] Whalen J. B., Currie K. L., Chappell B. W., ″A- type granites: geochemical characteristics, discrimination and petrogenesis″, Contributions to Mineralogy and Petrology 95 (1987) 407-419. [DOI:10.1007/BF00402202]
19. [19] Chappell B. W., White A. J. R., ″I- type and S- type granites in the Lachlan Fold Belt, Transactions of the Royal Society of Edinburg″, Earth Science 83 (1992) 1-26. [DOI:10.1017/S0263593300007720]
20. [20] Chappell B. W., White A. J. R., ″Two contrasting granite type: 25 years later″, Australian Journal of Earth Science 48 (2001) 489-499. [DOI:10.1046/j.1440-0952.2001.00882.x]
21. [21] Pearce J. A., Harris N. B. W., Tindle A. G., ″Trace element discrimination diagrams for the tectonic interpretation of granitic rocks″, Journal of Petrology 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
22. [22] Schandl E. S., Gorton M. P., ″Application of high field strength elements to discriminate tectonic settings in VMS environments″, Economic Geology 97 (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
23. [23] Sun S. S., McDonough W. F., ″Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes″, The Geological Society of London 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
24. [24] Pearce J. A., ″Role of the sub- continental lithosphere in magma genesis at active continental margins″, In: Hawkesworth, C. J., and Norry M. J., (Eds.): Continental Basalts and Mantle Xenoliths. Shiva, Nantwich (1983) 230-249.
25. [25] Gill J. B., ″Orogenic andesites and plate tectonics″, Springer (1981) New York. [DOI:10.1007/978-3-642-68012-0]
26. [26] Saunders A.D., Storey M., Kent R.W., Norry M.J., ″Consequences of plum - lithosphere interactions″, In: Story, B.c., Alabaster, T. Pankhurst, R.J. (Eds), Magmatism, and the Causes of Continental Breakup, vol. 68. Geological society of London special publication, London (1992), 41-60. [DOI:10.1144/GSL.SP.1992.068.01.04]
27. [27] Nagudi N. O., Koberl CH., Kurat G., ″Petrography and geochmistry of the Singo granite, Uganda and implications for its origin″, Journal of African earth sciences 35 (2003) 51-59.
28. [28] Reichew M. K., Saunders A. D., White R. V., Al M-Ukhamedov A. I., ″Geochemistry and Petrogenesis of Basalts from the West Sibrian Basin: an extention of the Permo- Triassic Sibrian Traps, Russia″, Lithos 79 (2004) 425-452. [DOI:10.1016/j.lithos.2004.09.011]
29. [29] Pearce J. A., Parkinson I. J., ″Trace element models for mantle melting: application to volcanic arc petrogenesis, In: Prichard H. M., Alabaster T., Harris N. B. W., Neary C. R., editors, Magmatic Processes and Plate Tectonics″, Geological Society, London, Special Publication 76 (1993) 373-403. [DOI:10.1144/GSL.SP.1993.076.01.19]
30. [30] Wilson M., ″Igneous petrogenesis: A global tectonic approach″, Harper Collins Academic, New York (1989). [DOI:10.1007/978-1-4020-6788-4]
31. [31] Boynton W. V., ″Cosmochemistry of the rare earth elements: meteorite studies, in rare earth element geochemistry″, Elsevier, Amsterdam (1985). [DOI:10.1016/B978-0-444-42148-7.50008-3]
32. [32] Arjmandzadeh R., Santos S. A., ″Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu-Mo porphyry mineralizing intrusives from Lut Block, eastern Iran″, International Journal of Earth Sciences (GeolRundsch) 103 (2014) 123-140. [DOI:10.1007/s00531-013-0959-4]
33. [33] Nebel O., Scherer E. E., Mezger K., ″Evaluation of the 87Rb decay constant by age comparison against the U-Pb system″, Earth and Planetary Science Letters 301 (2011) 1-8. [DOI:10.1016/j.epsl.2010.11.004]
34. [34] Jacobsen S. B., Wasserburg G. J., ″Sm-Nd isotopic evolution of chondrites″, Earth and Planetary Science Letters 50 (1980) 139-155. [DOI:10.1016/0012-821X(80)90125-9]
35. [35] Brown P. E., Lamb W. M., ″P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies″, Geochim. Acta 53 (1989) 1209-1221. [DOI:10.1016/0016-7037(89)90057-4]
36. [36] Sheppherd T. J., Rankin A. H., Alderton D. H. M., ″A Practical Guide to Fluid Inclusion Studies″, Blackie and Son (1985) 239 p.
37. [37] Bodnar R. J., ″Revised equation and table for determining the freezing point depression of H2O-NaCl solutions″, Geochimica et Cosmochimica Acta 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
38. [38] Wilkinson J. J., ″Fluid inclusions in hydrothermal ore deposits″, Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
39. [39] Sillitoe R., ″Gold- rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery″, SEG Reviews 13 (2000) 315-345 [DOI:10.5382/Rev.13.09]
40. [40] Sillitoe R. H, Hedenquist J. W., ″Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposit″, Society of Economic Geologists 13 (2003) 1-29.
41. [41] Sillitoe R., ″Exploration and discovery of base- and precious-metal deposits in the Circum-Pacific region during the last 25 years″, Resource Geology Special issue 19(1995), 119 p.
42. [42] Sillitoe R. H., ″Porphyry copper systems″, Economic Geology 105(2010), 3-41. [DOI:10.2113/gsecongeo.105.1.3]
43. [43] Sillitoe R., ″Styles of high-sulphidation gold, silver and copper mineralization in the porphyry and epithermal environments″, Australian Institute of Mining and Metallurgy, PacRim '99, Bali, Indonesia, 10−13 October, Proceedings, (1999)29−44.
44. [44] Hedenquist J.W., Arribas A. Jr., Reynolds T.J., ″Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines″, Economic Geology 93 (1998)373−404. [DOI:10.2113/gsecongeo.93.4.373]
45. [45] Stoffregen R.E., ″Genesis of acid-sulfate alteration and Au-Cu- Ag mineralization at Summitville, Colorado″, Economic Geology 82(1987), 1575-1591. [DOI:10.2113/gsecongeo.82.6.1575]
46. [46] Zhu Y., An F., Tan J., ″Geochemistry of hydrothermal gold deposits″, a review. Geoscience. Front 2(2011), 367-374. [DOI:10.1016/j.gsf.2011.05.006]
47. [47] Gammons C.H., Williams-Jones A.E., ″Chemical mobility of gold in the porphyry-epithermal environment″, Economic Geology 92 (1997) 45-59. [DOI:10.2113/gsecongeo.92.1.45]
48. [48] Kerrich R., ″Nature's gold factory″, Science 284 (1999) 2101-2102. [DOI:10.1126/science.284.5423.2101]
49. [49] Cooke D.R., Deyell C.L., Waters P.J., Gonzales R.I., Zaw K., ″Evidence for magmatic- hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines″, Economic Geology 106(2011), 1399-1424. [DOI:10.2113/econgeo.106.8.1399]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb