دوره 25، شماره 4 - ( 10-1396 )                   جلد 25 شماره 4 صفحات 726-711 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Almasi A, Arjmandzadeh R, fransisko santoz J, karimpour M H. Whole rock geochemistry and Sr-Nd isotopes of mafic to intermediate subvolcanics bodies of Kashmar, evidence for subduction of Sabzevar back arc basin beneath Lut block. www.ijcm.ir 2018; 25 (4) :711-726
URL: http://ijcm.ir/article-1-990-fa.html
الماسی علیرضا، ارجمندزاده رضا، فرانسیسکو سانتوز ژوزه، کریم‌پور محمدحسن. شیمی سنگ و ایزوتوپ‌های Sr-Nd توده‌های نیمه‌عمیق مافیک- حدواسط کاشمر، شاهدی بر فرورانش حوضه پشت کمان سبزوار به زیر بلوک لوت. مجله بلورشناسی و کانی شناسی ایران. 1396; 25 (4) :711-726

URL: http://ijcm.ir/article-1-990-fa.html


1- دانشگاه لرستان
2- دانشگاه پیام نور
3- دانشگاه آویرو
4- دانشگاه فردوسی
چکیده:   (3966 مشاهده)
براساس شواهد صحرایی، توده­های نیمه­عمیق مافیک-حدواسط کاشمر به دو مجموعه قدیمی (غالبا استوک­های گابرو، دیوریت، کوارتزدیوریت/مونزودیوریت) و مجموعه جدید (دسته آذرین تیغه­های موازی کوارتزمونزودیوریتی) تقسیم می­شوند. از لحاظ روابط قطع­شدگی، مجموعه قدیمی سنی بین قدیمی­ترین واحدهای آتشفشانی منطقه (57 میلیون سال) و گرانیتوئیدهای ائوسن (40 میلیون سال) دارد، اما دسته دایک­های موازی به پس از ائوسن (الیگوسن ؟) نسبت داده می­شوند. توده­های نیمه­عمیق مافیک-حدواسط با ویژگی آهکی-قلیایی پتاسیم بالا تا شوشونیتی، متاآلومین تا کمی پرآلومین، غنی­­شدگی LILE/HFSE و LREE [8/6-3/5La/Yb)N = )] و تخلیه از HREE، یادآور کمان­های منطقه فرورانش­اند. این ویژگی­ها به همراه بی­هنجاری منفی Eu نشان­دهنده تشکیل ماگما در عمق پایداری پلاژیوکلاز و آلودگی ماگما با پوسته قاره­ای است، که طی ذوب سنگ گارنت باقیمانده است. روند خطی اکسید عناصر اصلی و فرعی در نمودارهای هارکر دلالت بر اهمیت تبلور جدایشی در تکامل ماگمایی دارد. میانگین نسبت­های ایزوتوپ اولیه 87Sr/86Sr و 143Nd/144Nd (در 50 میلیون سال) برای نمونه­های مجموعه قدیم به ترتیب دارای گستره 7062/0-7054/0 و 51264/0-51262/0 و میزان εNdi دارای گستره 08/1 تا 42/1 است. نسبت­های ایزوتوپ اولیه 87Sr/86Sr و 143Nd/144Nd (در 30 میلیون سال) برای دسته دایک­های موازی به ترتیب 7056/0 و 51263/0 و مقدار εNdi آن 59/0 است. مقادیر εNdi مثبت و ISr کم در همه سنگ ها همراه با TDM اشان (8/0-6/0) ، دلالت بر این دارد که از ذوب بخشی منبع گوشته سنگ­کره­ای، که با گدازه­های حاصل از فرایندهای فرورانش قبل تر از آن تعدیل شده است، تشکیل شده اند. براساس نمودارهای Th/Ta نسبت به Nb/Ta و نمودار Nb/Y نسبت به Zr/Y، هر دوی فرآیندهای فرورانش و کافت­زایی در تشکیل سنگ های کاشمر دخیل بوده­اند. این ویژگی با فرورانش پوسته اقیانوسی سبزوار به زیر قلعه لوت سازگار است.
متن کامل [PDF 1866 kb]   (1149 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Bernhardt U., "Middle Tertiary volcanic rocks from the southern Sabzevar zone, Khorasan, NE Iran. Geodynamic Project (Geotraverse) in Iran", Geological Survey of Iran, Report No. 51(1983) 277-284.
2. [2] Soltani A., "Geochemistry and geochronology of I-type granitod rocks in the northeastern central Iran plate". Ph.D. Thesis, University of Wollongong, Australia (2000) 300 p.
3. [3] Shafaii Moghadam H.S., Li X.H., Ling X.X., Santos J.F., Stern R.J., "Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry". Lithos 216–217 (2015) 118–135. [DOI:10.1016/j.lithos.2014.12.012]
4. [4] Le Bas M.J., Streckeisen A.L., "The IUGS classification of igneous rocks". Journal of Geological Society London 148 (1991) 825-833. [DOI:10.1144/gsjgs.148.5.0825]
5. [5] Irvine, T.N., Baragar, W.R.A., "A guide to the chemical classification of the common volcanic rocks", Canadian Journal Earth Science 8 (1971) 523 -548. [DOI:10.1139/e71-055]
6. [6] Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F., "Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram". Journal of Petrology 48 (2007) 2341–2357. [DOI:10.1093/petrology/egm062]
7. [7] Maniar P.D., Piccoli P.M., "Tectonic discrimination of granitoids", Geology Society American Bulltin 101(1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
8. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
9. [8] Sun S.S., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes". Geol Soc Lond Spec Publ 42 (1989) 313–345. [DOI:10.1144/GSL.SP.1989.042.01.19]
10. [9] Taylor S.R., Mc Lennan S.M., "The continental crust, Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks". Oxford (1985) 312 p.
11. [10] Pearce J.A., Haris N.B.W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks". Journal of petrology, 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
12. [11] Shervais J.W., "Ti–V plots and the petrogenesis of modern and ophiolitic lavas". Earth and Planetary Science Letters 59 (1982) 101–118. [DOI:10.1016/0012-821X(82)90120-0]
13. [12] Condie K.C., "High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?" Lithos 79 (2005) 491–504. [DOI:10.1016/j.lithos.2004.09.014]
14. [13] Pearce J.A., Stern R.J., "Origin of back basin magmas: trace element and isotope perspectives. Back-arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions: In: Christie, D.M., Fisher, C.R., Lee, S.M., Givens, S. (Eds.), Geophysical Monograph Series (2006) 166. http://dx.doi.org/10.1029/166GM06. [DOI:10.1029/166GM06]
15. [14] Asiabanha A., Foden J., "Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran". Lithos 148 (2012) 98-111. [DOI:10.1016/j.lithos.2012.05.014]
16. [15] Mobarhan S.K., Ahmadipour H., "Using magma mixing/mingling evidence for understanding magmatic evolution at Mount Bidkhan Stratovolcano (South-East Iran)". Journal of Sciences, Islamic Republic of Iran 21 (2010) 137–153.
17. [16] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet L., "Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences". Lithos 106 (2008) 380–398. [DOI:10.1016/j.lithos.2008.09.008]
18. [17] Pearce J.A., Stern R.J., Bloomer S.H., Fryer P., "Geological mapping of the Mariana arc-basin systems: implications for the nature and distribution of subduction components". Geochemistry, Geophysics, Geosystems 6 (2005) (2004GC00895).
19. [18] Almasi A., "Mineralizaion, Petrogenesis and geochemical-geophysical exploration in Uch Palang- Sarsefidal area (Northeast of Kashmar)". Ph.D Thesis, Ferdowsi University of Mashhad, Mashhad, Iran (2015) 305 p.
20. [19] Zindler A., Hart S.R., "Chemical geodynamics". Anniversary Review Earth Planetary Sciences 14 (1986) 493- 571. [DOI:10.1146/annurev.ea.14.050186.002425]
21. [20] Martin H., "The adakitic magmas: modern analogues of Archaean granitoids". Lithos 46 (3) (1999) 411-429. [DOI:10.1016/S0024-4937(98)00076-0]
22. [21] Pearce J. A., Haris N. B. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks". Journal of Petrology 11 (1984) 77-96. [DOI:10.1093/petrology/25.4.956]
23. [22] Pearce J. A., Parkinson I.J., "Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H.M., Albaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic Processes in Plate Tectonics". Geological Society of London 76 (1993) 373–403. [DOI:10.1144/GSL.SP.1993.076.01.19]
24. [23] Reagan M.K., Gill J.B., "Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source". Journal of Geophysical Research 94 (1989) 4619–4633. [DOI:10.1029/JB094iB04p04619]
25. [24] Martin H., "The Achaean grey gneisses and the genesis of the continental crust". Elsevier 86 (1995) 205-25.
26. [25] Klimm K., Holtz F., King P.L., "Fractionation vs. magma mixing in the wangrah suite A-type granites, Lachlan Fold Belt, Australia: experimental constraints". Lithos 102 (2008) 415–434. [DOI:10.1016/j.lithos.2007.07.018]
27. [26] Rapp R.P., Watson E.B., "Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling". Journal of Petrology 36 (1995) 891-931. [DOI:10.1093/petrology/36.4.891]
28. [27] Kebede T., Koeberl C., "Petrogenesis of A-type granitoids from the Wallagga area, western Ethiopia: constraints from mineralogy, bulk-rock chemistry, Nd and Sr isotopic compositions". Precambrian Research 121 (2003) 1–24. [DOI:10.1016/S0301-9268(02)00198-5]
29. [28] Arslan M., Aslan Z., "Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey". Journal of Asian Earth Sciences 27 (2006) 177–193. [DOI:10.1016/j.jseaes.2005.03.002]
30. [29] Zhong H., Zhu W.G., Hu R.Z., Xie L.W., He D.F., Liu F., Chu Z.Y., "Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust". Lithos, Doi: 10.1016/j. Lithos 2008.12.006.
31. [30] Castro A., Gerya T.V., "Magmatic implications ofmantle wedge plumes: Experimental study". Lithos 103 (2008) 138–148. [DOI:10.1016/j.lithos.2007.09.012]
32. [31] Altherr R., Henjes-Kunst F., Langer C., Otto J., "Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany)". Contributions to Mineralogy and Petrology 137 (1999) 304–322. [DOI:10.1007/s004100050552]
33. [32] Altherr R., Holl A., Hegner E., Langer C., Kreuzer H., "High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)". Lithos 50 (2000) 51–73. [DOI:10.1016/S0024-4937(99)00052-3]
34. [33] Galan G., Pin C., Duthou J.L., "Sr–Nd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context — The ultramafic–granitoid association from Vivero (Hercynian belt, NW Spain)". Chemical Geology 131 (1996) 67–91. [DOI:10.1016/0009-2541(96)00027-7]
35. [34] Kemp A.I.S., Whitehouse M.J., Hawkesworth C.J., Alarcon M.K., "A zircon U–Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification andmagma differentiation processes". Contributions to Mineralogy and Petrology 150 (2005a) 230–249. [DOI:10.1007/s00410-005-0019-6]
36. [35] Kemp A.I.S., Wormald R.J., Whitehouse M.J., Price R.C., "Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia". Geology 33 (2005b) 797–800. [DOI:10.1130/G21706.1]
37. [36] Topuz G., Altherr R., Siebel W., Schwarz W. H., Zack T., Hasozbek A., Barth M., Satir M., Sen C., "Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gumushane pluton (NE Turkey)". Lithos 116 (2010) 92–110. [DOI:10.1016/j.lithos.2010.01.003]
38. [37] Alavi M., "Structures of the Zagros fold-thrust belt in Iran". American Journal of Science 307 (2007) 1064–1095. [DOI:10.2475/09.2007.02]
39. [38] Allen M.B., Ghassemi M.R., Shahrabi M., Qorashi M., "Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran". Journal of Structural Geology 25 (2003) 659–672. [DOI:10.1016/S0191-8141(02)00064-0]
40. [39] Asiabanha A., Ghasemi H., Meshkin M., "Paleogene continental-arc type volcanism in North Qazvin, North Iran: facies analysis and geochemistry". Neues Jahrbuch für Mineralogie Abhandlungen 186 (2009) 201–214. [DOI:10.1127/0077-7757/2009/0144]
41. [40] Berberian F., Muir I.D., Pankhurst R.J., Berberian M., "Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran". Journal of the Geological Society of London 139 (1982) 605–614. [DOI:10.1144/gsjgs.139.5.0605]
42. [41] Dargahi S., Arvin M., Pan Y., Babaei A., "Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision". Lithos 115 (2010) 190–204. [DOI:10.1016/j.lithos.2009.12.002]
43. [42] Ghasemi A., Talbot C.J., "A new scenario for the Sanandaj–Sirjan zone (Iran)". Journal of Asian Earth Sciences 26 (2006) 683–693. [DOI:10.1016/j.jseaes.2005.01.003]
44. [43] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz". Journal of Asian Earth Sciences 24 (2005) 405–417. [DOI:10.1016/j.jseaes.2003.11.007]
45. [44] Zanchi A., Berra F., Mattei M., Ghassemi M., Sabouri J., "Inversion tectonics in central Alborz, Iran". Journal of Structural Geology 28 (2006) 2023–2037. http://dx.doi.org/10.1016/j.jsg.2006.06.020. [DOI:10.1016/j.jsg.2006.06.020]
46. [45] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., "Late Eocene–Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source". Lithos 180 (2013) 109–127. [DOI:10.1016/j.lithos.2013.08.003]
47. [46] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process". Geological Magazine 148 (2011) 692–725. [DOI:10.1017/S001675681100046X]
48. [47] Sen P.A., Temel A., Gourgaud A., "Petrogenetic modelling of Quaternary postcollisional volcanism: a case study of central and eastern Anatolia". Geological Magazine 141 (2004) 81–98. [DOI:10.1017/S0016756803008550]
49. [48] Amidi S.M., Emami M.H., Michel R., "Alkaline Character of Eocene Volcanism in the Middle Part of Central Iran and Its Geodynamic Situation". Geological Rundschu 73 (1984) 917–932. [DOI:10.1007/BF01820882]
50. [49] Verdel C., Wernicke B.P., Hassanzadeh J., Guest B., "A Paleogene extensional arc flare-up in Iran". Tectonics 30 (2011) TC3008, doi:10.1029/2010TC002809. 1. [DOI:10.1029/2010TC002809]
51. [50] Shafaii Moghadam H.S., Corfu F., Chiaradia M., Stern R.J., Ghorbani G., "Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data". Lithos 210–211 (2014) 224–241. [DOI:10.1016/j.lithos.2014.10.004]
52. [51] Baroz F., Macaudiere J., Montigny R., Noghreyan M., Ohnenstetter M., Rocci G., "Ophiolites and related formations in the central part of the Sabzevar (Iran) and possible geotectonics reconstructions". Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen) 168 (1984) 358–388.
53. [52] Alaminia Z., Karimpour M.H., Homam S.M., Finger F., "the magmatic record in the Arghash region (northeast Iran) and tectonic implications", International Journal of Earth Sciences 102 (2013) 1603–1625. [DOI:10.1007/s00531-013-0897-1]
54. [53] Rossetti F., Nasrabady M., Theye T., Gerdes A., Monie P., Lucci F., Vignaroli G., "Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran)". Geological Society of America Bulletin 126 (2014) 317–343. [DOI:10.1130/B30913.1]
55. [54] Molinaro M., Zeyen H., Laurencin X., "Lithospheric structure beneath the southeastern Zagros Mountains, Iran: recent slab break-off?" Terra Nova 17 (2005) 1–6. [DOI:10.1111/j.1365-3121.2004.00575.x]
56. [55] Hatzfeld D., Molnar P., "Comparisons of the Kinematics and Deep Structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and Geodynamic Implications". Reviews of Geophysics 48 (2010). [DOI:10.1029/2009RG000304]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb