دوره 29، شماره 1 - ( 1-1400 )                   جلد 29 شماره 1 صفحات 80-63 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emamjomeh, Jahangiri, Moazzen. Geochemistry and geological setting of turquoise hosted intrusive bodies in Damghan (Baghou) turquoise-gold mine, Torud- Chah Shirin volcano-plutonic segment.. www.ijcm.ir 2021; 29 (1) :63-80
URL: http://ijcm.ir/article-1-1586-fa.html
امام جمعه امیر، جهانگیری احمد، مؤذن محسن. بررسی زمین شیمی و جایگاه زمین‌ساختی ماگمایی توده‌های نفوذی میزبان فیروزه در معدن فیروزه-‌ طلای دامغان (باغو)، کمان آتشفشانی-نفوذی ترود-چاه شیرین. مجله بلورشناسی و کانی شناسی ایران. 1400; 29 (1) :63-80

URL: http://ijcm.ir/article-1-1586-fa.html


1- گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز
چکیده:   (1001 مشاهده)
توده‌های نفوذی نیمه‌عمیق دیوریتی و گرانودیوریتی به سن ائوسن میانی و توده‌های گنبدی شکل ریولیتی در غرب کمان آتشفشانی-نفوذی ترود-چاه شیرین، سنگ‌های آتشفشانی ائوسن پیشین را قطع کردهاند. تودههای گرانودیوریتی و ریولیتی میزبان اصلی کانهسازی فیروزه و طلا در معدن دامغان (باغو) هستند. این توده‌ها سرشت آهکی-قلیایی غنی از پتاسیم، متاآلومین (دیوریت­ها و بخشی از گرانودیوریت­ها) تا پرآلومینوس (ریولیت­ها و بخشی از گرانودیوریتها) دارند. مقایسه مقادیر TiO2-La-Hf و Zr-Nb-Ce/P2O5 و همچنین نسبت­های Rb به Y+Nb نشان دهنده ارتباط فعالیت ماگمایی با محیط­های پس برخوردی تتیس جوان است. از طرفی دگرنهادی گوشته زیر کمان در اثر آزاد شدن سیال­ها از رسوب­ها و ورقه فرورونده سبب ناهنجاری منفی عناصر Ti، Nb و Ta و نسبت بالای عناصر سنگ دوست بزرگ یون به عناصر با شدت میدان بالا (LILE / HFSE)  در گوشته و ماگمای برآمده شده است. ذوب­بخشی گوشته سبب تشکیل ماگمای اولیهای شده که در اثر جدایش بلوری، آلایش پوسته‌ای و آمیختگی، ماگماهای دیوریتی، گرانودیوریتی و ریولیتی را بوجود آورده است.      
متن کامل [PDF 5491 kb]   (373 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Heidari SM., Mossavi Makooi SA., Mirzakhanian M., Rasoli F., Ghaderi M., Abadi AR., A review of tectono-magmatic evolution and gold metallogeny in the inner parts of Zagros orogeny:a tectonic model for the major gold deposits,W Iran, Eurasian Mining,1(2006) 3-20.
2. [2] Hushmandzadeh A., Alavi-Naini M., Haghipour A., Geological evolution of Torud area with 1:250000 scale map of Torud, Tehran, (1978), Geological Survey of Iran (in Persian).
3. [3] Aghanabati A., Geology of Iran, Geological survey of Iran, (2004), ISBN: 9646178138 (in Persian).
4. [4] Eshraghi S.A., Jalali. A, Geological map of Moalleman, 1:100,000 ,Geological (2006), Survey of Iran.
5. [5] Liaghat S., Sheykhi V., Najjaran M., Petrology, gheochemistry and genesis of Baghu turquoise, Damghan, Journal of Science, University of Tehran, (2008)133-142, (in Persian).
6. [6] Najjaran M., Geochemistry and genesis of Baghu turquoise deposit (Damghan), M.Sc. Thesis, Shiraz University, Shiraz, Iran, (2000)150 pp, (in Persian).
7. [7] Rashid Nejad Omran N., Petrography and magmatic changes study and Relationship with Au mineralization in Baghu area, (S-SE of Damghan), M.Sc. Thesis, Tarbiat Moallem Unuversity, Tehran, Iran, (1993) 256 pp, (in Persian).
8. [8] Ghorbani Gh., Petrology of magmatic rocks from south of Damghan, Unpublished Ph.D thesis in geology/petrology, Faculty of earth science, Shahid Beheshti University, (2005) 356 p
9. [9] Ghorbani G., Chemical composition of minerals and genesis of mafic microgranular enclaves in intermediate - acidic plutonic rocks from Kuh -e- Zar area (southeast of Semnan), Iranian Journal of Crystallography and Mineralogy 15-2 (2007) 293-310, (in Persian).
10. [10] Ghorbani G., Vossoghi Abedini M., Ghasemi H., Geothermobarometry of granitoids from Torud-Chah shirin area (south Damghan), Iranian Journal of Crystallography and Mineralogy 13-1 (2005) 95-106, (in Persian).
11. [11] Rouhbakhsh P., Karimpour M.H., Malekzadeh Shafaroudi A., Mineralization and fluid inclusion studies in the northern part of the Kuh Zar Au-Cu deposit, Damghan (Firuzeh-Gheychi area), Iranian Journal of Crystallography and Mineralogy 26-3 (2018) 611-624, (in Persian). [DOI:10.29252/ijcm.26.3.611]
12. [12]Niroomand S., Hassanzadeh J., Tajeddin H.A., Asadi S., Hydrothermal evolution and isotope studies of the Baghu intrusion-related gold deposit, Semnan province, north central Iran, Ore Geology Reviews, 95, (2018) 1028-1048. [DOI:10.1016/j.oregeorev.2018.01.015]
13. [13] Khademi M., Structural characteristics and tectonic setting of Toroud area, south of Damghan, Unpublished Ph.D thesis in Tectonic, Shahid Beheshti University, Tehran, (2007) 209 pp.
14. [14] Moradi S., Hassannejad A.K., Ghorbani G., Investigation of mineralogy and geothermometry of quartz and tourmaline veins at the Baghu area, southeast of Damghan, Iranian Journal of Crystallography and Mineralogy 24-4 (2017) 661-674, (in Persian).
15. [15] Taghipour B., Tourmaline-turquoise paragenesis in the phyllic alteration zone, copper-gold deposit, Kuh-Zar, South of Semnan, Iranian Journal of Crystallography and Mineralogy. 23-1(2015) 3-14.
16. [16] Whitney D.L., Evans B.W., Abbreviations for names of rock-forming minerals, American Mineralogist, 95, (2010) 185-187. [DOI:10.2138/am.2010.3371]
17. [17] Harker A., The natural history of igneous rocks. Methuen and Co. London (1909).
18. [18] De La Roche H., Leterrier J., Grandclaude P., Marchal M., A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses - Its relationships with current nomenclature, Chemical Geology, 29 (1980)183-210. [DOI:10.1016/0009-2541(80)90020-0]
19. [19] Gillespie M.R., Styles M.T., BGS rock classification scheme, V:1, Classification of Igneous rocks, British Geological Survey Research Report, 2nd edition, RR 9606.
20. [20] Peccerillo A., Taylor S. R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol. 58 (1976) 63-81. [DOI:10.1007/BF00384745]
21. [21] Irvine T.N., Baragar W.R.A. A guide chemical classification of the common volcanic rock, Canada J. Earth Sci. 8 (1971) 523-548 [DOI:10.1139/e71-055]
22. [22] Shand Eruptive Rocks. John Wiley & Sons, (1943).
23. [23] Nakamura N., Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochimica et Cosmochimica Acta 38, no. 5 (1974) 757-775. [DOI:10.1016/0016-7037(74)90149-5]
24. [24] Sun S.S., McDonough W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geological Society of London, No. 42- 1 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
25. [25] Taylor S.R., McLennan S.M., The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks, Oxford, Blackwell Scientific, (1985) 312 p.
26. [26] Müller D., Rock NMS., Groves D.I., Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study, Mineralogy and Petrology, 46 (1992)259-289. [DOI:10.1007/BF01173568]
27. [27] Pearce J.A., Source and setting of granites rocks. Episodia, 19-4, (1996) 120-125. [DOI:10.18814/epiiugs/1996/v19i4/005]
28. [28] Schmidt M.W., Dardonb A., Chazotb G., Vannuccic R., The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes, Earth and Planetary Science Letters 226 (2004) 415 - 432. [DOI:10.1016/j.epsl.2004.08.010]
29. [29] Walker J.A., Patino L.C., Carr M.J., Feigenson M.D., Slab control over HFSE depletions in central Nicaragua, Earth and Planetary Science Letters, 192 (2001)533-543. [DOI:10.1016/S0012-821X(01)00476-9]
30. [30] Wilson M., Igneous petrogenetic, Chapman & Hall, (1989) 466p. [DOI:10.1007/978-1-4020-6788-4]
31. [31] Perugini D., Poli G., The mixing of magmas in plutonic and volcanic environments: Analogies and differences, Lithos, (2012), DOI: 10.1016/j.lithos.2012.02.002. [DOI:10.1016/j.lithos.2012.02.002]
32. [32] Nesbitt H.W., Markovics G., Price R.C., Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta 44 (1980) 1659-1666. [DOI:10.1016/0016-7037(80)90218-5]
33. [33] Rolinson H.R., Using geochemical data: Evaluation, presentation, interpretation, Longman Scientific and Technical, London (1993).
34. [34] Barbarin B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos 46 (1999) 605-626. [DOI:10.1016/S0024-4937(98)00085-1]
35. [35] Castro A., Moreno-Ventas I, de la Rosa J.D., H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature, Earth Science Review, 31(1991) 237-253. [DOI:10.1016/0012-8252(91)90020-G]
36. [36] Castro A., PatinÄ o Douce A.E., Guillermo Corretge Â.L., de la Rosa J.D., Mohammed El-Biad M., El-Hmidi h., Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis, Contrib Mineral Petrol , 135(1999) 255-276. [DOI:10.1007/s004100050511]
37. [37] Sverrisdottir G., Hybrid magma generation preceding Plinian silicic eruptions at Hekla,Iceland: Evidence from mineralogy and chemistry of two zoned deposits, Geological. Magazine. 144-4 (2007) 643-659. [DOI:10.1017/S0016756807003470]
38. [38] Li J.Y., Niu Y.L., Hu Y., Chen S., Zhang Y., Duan M., Sun P., Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau:a case for crust-mantle interaction. Lithos, 260 (2016) 300-314. [DOI:10.1016/j.lithos.2016.05.028]
39. [39] Roberts M. P., Clemens J. D., Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21 (1993) 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
40. [40] Zhang X., Zhang H., Jiang G.N., Zhai ZhangY., Early Devonian alkaline intrusive complex from the northern North China craton: a petrological monitor of post-collisional tectonics, Journal of the Geological Society, London, 167 (2010) 717-730. [DOI:10.1144/0016-76492009-110]
41. [41] De Paolo D., Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291 (1981) 193-196. [DOI:10.1038/291193a0]
42. [42] Baxter S., Feely M., Magma mixing and mingling textures in granitoid: examples from the Galway granite, Connemara, Ireland, Mineralogy and Petrology, 76 (2002) 63-77. [DOI:10.1007/s007100200032]
43. [43] Woods A.W., Cowan A., Magma mixing triggered during volcanic eruptions, Earth and Planetary Science Letters 288 (2009) 132-137 , doi:10.1016/j.epsl.2009.09.015. [DOI:10.1016/j.epsl.2009.09.015]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb