اثر آلایش نقطه کوانتمی گرافن با عناصر N, B, K و Cl بر طیف گسیلی آن

امین کاظمی۱، محمدضاہر اسلام فیزیک، غلامرضا یزدی ۲

۱- دانشکده فیزیک، دانشگاه آزاد اسلامی، واحد تهران شرق

چکیده: در این ژوهش، اثر آلایش نقطه کوانتمی گرافن بر طیف‌های گسیلی آن توسط سیمپلیکسیون به روش روآرایی‌ای گفته شده است. تعدادی نقطه کوانتمی گرافن آلایشی شده بر زیر لایه گرافن به وسیله لایه‌‌های نیترات استفاده شده است. برای بررسی آلایشی، از تکنیک‌های مختلفی در علوم پیشرفته و خاصاً تکنیک‌های کیفی از جمله تکنیک‌های SEM و XRD استفاده شده است. در نتیجه، نشان داده شد که این آلایش گرافن با توجه به معادله فیزیکی کلیهی گرافن در اثر آلایشی در لایه‌ی گرافن و کارکردهای سیمپلیکسیون را تا حدی کاهش می‌دهد.

مقدمه

نیترات‌های نیترات دارای روشی برای بررسی و بررسی مولکول‌های متون و پیمان ابتکاری، الکتروکی و مناطق‌یکی توجه بسیاری را به خود جلب کرده‌اند [۱-۵]. گرافن نیتراس، دارای ساختار لایه‌ای زنبوری دوبعدی و پیوندهای یکdimp β اسطر و به‌دلیل ویژگی‌های نوری، الکتریکی، میکرو و وزیمی گرافن به وسیله در قطعه‌های گوناگون کاربردهای می‌شود [۶-۹]. این نیتراس دارای سطح یک‌نواخت مناسب برای استفاده به عنوان یک سطح‌سازی است [۷] برخی مؤلک‌های زیستی از طریق نیتروس شعاع تندرو را جذب می‌کند که باعث می‌شود...
گرافی صرف‌عیالی به بدمحل‌محدودی‌های کوانتومی و آثار لایه‌ای توجه برسانی را به خود جلب کرده‌اند [16,14]. گرافی بدمحل داشت طیف نری گسلی متمایز در قطعه های ایکتیک کاربردگی گوانائو دارد [13]. الانش نیمرسانه‌ها می‌تواند منجر به تغییر ویژگی‌ها و حتی ایجاد ویژگی‌های جدید در آن‌ها باشد [16-19].

روش متعادل برای نهی نک‌لایه‌های گرافی و چون MS، نیکل و روبیدیوم است [21]. در این روش، نیکل، نامتاخیسه‌های فلزی منجر تارک‌سازی می‌گردد که بر زیرلیه‌ای فلزی سبز، نیکل و روپیدیوم است [21]

کاربردهای جنیانی موثری گزارش نشده است [22]. روش دیگر، که باعث صورتی در این روش می‌گردد که بر زیرلیه‌ای فلزی سبز، نیکل و روپیدیوم است [21].

روش متعادل برای نهی نک‌لایه‌های گرافی و چون MS، نیکل و روبیدیوم است [21]. در این روش، نیکل، نامتاخیسه‌های فلزی منجر تارک‌سازی می‌گردد که بر زیرلیه‌ای فلزی سبز، نیکل و روپیدیوم است [21]

روش متعادل برای نهی نک‌لایه‌های گرافی و چون MS، نیکل و روبیدیوم است [21]. در این روش، نیکل، نامتاخیسه‌های فلزی منجر تارک‌سازی می‌گردد که بر زیرلیه‌ای فلزی سبز، نیکل و روپیدیوم است [21]
آلاتیش زیر لایه گرافن با نقطه کوانتومی

نقاط کوانتومی گرافن (GQD) مورد نیاز در این پژوهش از شرکت ACS material تهیه شدند.

عناصر پتاسیم (K), گرد (Cl), نیترژن (N) و بور (B) برای آلاتیش نقاط کوانتومی در نظر گرفته شدند.

توجه شد که انرژی تبادل یک از این عناصر با ویژگی متغیرهای آلاتیش شدند.

برای انرژی تبادل آلاتیش در جدول ماده شده است. برای آلاتیش نقاط کوانتومی پتاسیم، ۳۰۰rpm از پودر هیدروکسید پتاسیم با ۱۵ میلی لیتر آب حل شد. این محلول به نسبت (KOH) ۱۱ به نقطه کوانتومی ترکیب گردید و سپس به مدت یک ساعت در معرض امواج فراصوت ۵۰ هرتز در دمای ۳۷ درجه قرار داده شد. محلول به دست آمده به رابطه ۷۲ درجه سانتی‌گراد درد داشت و درد ۳۷ درجه در دمای ۱۱۰۰۰rpm به دست آمد.

برای آلاتیش نقاط کوانتومی مورد استفاده شد، فرآیند آلاتیش برای

برای آلاتیش نقاط کوانتومی با کلر نیتریک میلی لیتر اسید کلریدیک (HCl) با ۳ میلی لیتر آب دو بار فرآیند محلول بود به نسبت ۱۱ به نقطه کوانتومی ترکیب گردید. این فرآیند آلاتیش
بحث و نتیجه‌گیری
برای بررسی ساختار گرافن سنتز شده بر زیرهای کاریگردان سیلیکون، طیف سنگین XRD در زوايا خرائتان انجام شد. نتایج این طیف‌سنجی در شکل 2 نشان داده شده است. دیده شده که قله اوج در زاویه 2θ = 26/2o رخ داده که مربوط به صفحه (002) ساختار گرافن است. افزون بر آن، قله‌های دیگر در زوايا 36/37 و 41/89 درجه دیده می‌شوند که مربوط به تریب‌های در形成了ه‌های (100) و (110) مربوط به متناهی هستند. این قله‌ها ساختار تقریباً تک بلوژی تراشه‌های کاریگردان سیلیکون را نشان می‌دهند. انداره نانو بلورگ‌ها (D) با استفاده از رابطه شرح [34] محاسبه شد:

\[D = \frac{1200}{\beta_{10} \cos \theta} \]

محاسبه شد که در آن, \(\beta \) طول موج پرتو ایکس، \(\theta \) به پاین در نیم خط دواینده در طولی قله (FWHM) و 0 زاویه پراش قله‌های دیگر انداره داده‌ها براساس قله (002) در زاویه 2θ = 26/2o رخ داده که مربوط به فاز گرافن و قله (100) در زاویه 2θ = 41/89 رخ داده که مربوط به فاز کاریگردان سیلیکون بود.

- Grazing incidence XRD
- Reflectance mapping

جدول 1 مشخصه‌های نقطه کوانترنی گرافن.

<table>
<thead>
<tr>
<th>نقطه کوانترنی گرافن</th>
<th>نام ترکیب</th>
<th>مخلوط بر گرگ</th>
<th>ظاهر</th>
<th>قطره نوبرایی</th>
<th>کمتر از</th>
<th>اندازه درات</th>
<th>چگالی</th>
<th>مسیل گرم بر میلی لیتر</th>
<th>آب (و مقدار کمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدروکسی آمین (D)</td>
<td>Búmero</td>
<td>H2BO3</td>
<td>1 50</td>
<td>ناگهانی</td>
<td>50</td>
<td>50</td>
<td>هیدروکسی کریستال</td>
<td>1 3</td>
<td>3 5</td>
</tr>
<tr>
<td>کلر (Cl)</td>
<td>(B)</td>
<td>KOH</td>
<td>1</td>
<td>ناگهانی</td>
<td>50</td>
<td>50</td>
<td>کلر کریستال</td>
<td>1 3</td>
<td>3 5</td>
</tr>
<tr>
<td>نیتریتر (N)</td>
<td>(C)</td>
<td>HCl (37%)</td>
<td>1 5</td>
<td>ناگهانی</td>
<td>50</td>
<td>50</td>
<td>نیتریتر کریستال</td>
<td>1 3</td>
<td>3 5</td>
</tr>
<tr>
<td>نیتریتر (N)</td>
<td>(C)</td>
<td>HCl (37%)</td>
<td>1 5</td>
<td>ناگهانی</td>
<td>50</td>
<td>50</td>
<td>نیتریتر کریستال</td>
<td>1 3</td>
<td>3 5</td>
</tr>
</tbody>
</table>

جدول 2 آنالیزهای نقطه کوانترنی گرافن بر حسب ulfrac. این ترکیب در شکل 4 نشان داده شده است. نگاشت بازتابنگی 1 از گرافن سنتز شده بر فراز کاریگردان AFM توصیف شده است. نگاشت لاک کاریک سیلیکون به ترتیب در شکل‌های 3 و 4 ب ارائه شده است. شکل 1 این کیونکی یک ترکیب به زیبارهای سیلیکون کاربید نیز دیده می‌شود. دیده اینهای گرافن در نگاشت بازتابنگی (شکل 2) مشخص شده است. نگاشت بازتابنگی بر پایه رسم قدرت پرتو لیزر بازتابنگی از نمونه در طیف سنج میکروسکوپ رامینه شده و مسیر یا دقیق نسخه‌های از گرافن در نمونه شناسایی کرده [35]. به‌تازه کرم از گرافن در نمونه شناسایی کرده [35]. به‌تازه کرم از گرافن در نمونه شناسایی کرده [35].
شکل ۲ طیف XRD در زاویای خراسان از سطح گرافن رشد داده شده بر زیرایه 4H-SiC.

شکل ۳ (الف) تصویر میکروسکوپ نوری اتمی (AFM) از گرافن سنتز شده بر زیرایه SiC و (ب) نگاشت باندباندی از نمونه در تصویر الف.

شکل ۴ (الف) تصویر نورگسیل نقاط کانیتووی گرافن در معرض نور معمولی که شفاف دیده می‌شوند (چپ) و نور UV که به رنگ سیب زعتر می‌شوند (راست). (ب) تصویر نقاط کانیتووی گرافن محلول در آب و (پ) نمودار توزیع اندازه نقاط کانیتووی گرافن.
پس از لایه‌های نقاط کوانتومی بر زیراپیه، یک تصویر کلی از سطح نمونه توسط میکروسکوب نوری بر زیرگرافی مناسب تهیه شد. این تصویر که در شکل 5 ارائه شده است نشان می‌دهد که با گذر زمان، نقاط کوانتومی به صورت کلی نخی و می‌بایست امداده‌بندی برای تبدیل شدن به حالت آرمانی (شکل 6) انجام شود که با این دو روش بررسی شد.

برای جلوگیری از کلی نخی شدن نقاط کوانتومی سونش سه مرحله ای انجام گرفت: 1) فرآیند سونش بر زیراپیه و 2) تصویر AFM و SEM نقاط کوانتومی گرافن پس از فرآیند سونش بر زیراپیه است. 3) نقاط کوانتومی مطلوب است. همچنین با توجه به شکل 6، نقاط کوانتومی گرافن از جمله کلی نخی خارج شده و فاصله مناسبی از هم دیگر دارند.

شکل 5 تصویر میکروسکوب نوری از نقاط کوانتومی گرافن کلی نخی شده بر زیراپیه.

شکل 6 (الف) تصویر میکروسکوب الکترونی روبشی (SEM) و (ب) تصویر AFM از نقاط کوانتومی گرافن نهشته شده بر زیراپیه گرافن.
گسپنی از نقاط کوانتوپی آلیش شده افراشی می‌باشد. مقایسه
شته نسبی طیف‌های گسپنی نقاط کوانتوپی آلیش شده
(شکل 2) نمایش می‌دهد که شده قله مربوط به پتانسیم از همه
پبشتر بوده که به احتمال بیشتر بدلی شاعط امی ورگنتر آن
است.

برداشت
اثر آلیش نقاط کوانتوپی گرافن نهشته شده بر زبر لایه گرافن
رشد داده شده بر کاریبد سیلیکون بر طیف‌های گسپنی از آنها
بررسی شد. تصویر میکروسکوب نوری امی و پخشی سطح
گرافن رشد داده شده بر کاریبد سیلیکون را نشان می‌دهد.
تصویر میکروسکوب الکترونی جدید نیز توانایی تشخیص نقاط
کوانتوپی گرافن بر زبر لایه را نشان می‌دهد. با افزایش میزان
آلیش عناصر بور و پتانسیم، شدت طیف‌های گسپنی از نقاط
کوانتوپی آلیش شده افراشی و با افزایش آمپیه‌ها نیتروزون
و کلر، شدت آنها کاهش می‌یابد. با افزایش مقدار پتانسیم از همه
عناصر، شدت قله‌های مربوط به پتانسیم پبشتر از بور و شدت
قله‌های نقاط کوانتوپی گرافن آلیش شده با نیتروزون نسبت به
کل پبشتر است. حاصل این نتایج این است گسپنی مربوط به پتانسیم و پبشترین کاهش مربوط به کلر
است.

یکی نوربینی (PL) در نیروساناها اهمیت ویژه‌ای دارد. در این
یکی نوربینی‌های نیورسانا با جذب فوتون‌های نور برناگیخته
شد و طی فرآیندش به نواز باین تر نور کلسیم کنند
[۲۳]. در اینجا به منظور بررسی اثر آلیش نقاط کوانتوپی با
عناصر پتانسیم (K)، نیتروزون (N) و بور (B) و
همچنین میزان آلیش برای یک‌سازی که نقاط کوانتوپی
آلیش و سونر شده بر آنها به طور یکجا تحت توزیع شدند
طیف‌سنجی نور تابی انجام شد. شکل‌های ۷ و ۸ طیف‌های
نوربینی نقاط کوانتوپی گرافن آلیش شده با پتانسیم، بور،
نیتروزون و کلر بر زبر لایه گرافن را نشان می‌دهند. از آنجا که
نور فرابندس با طول موج ۲۸۰ نانومتر برا می‌شود، برای
استقلال در حدود ۳۸۰ نانومتر است. دیده می‌شود که شدت
قله‌های نقاط کوانتوپی گرافن آلیش شده با نیتروزون نسبت به
کل پبشتر است. این نتایج در شدت قله‌های با احتمال بسیار
بیشتر بودن الکترون‌های خاوی کلسیم (۳.۴۱) و انرژی بیونش
آن در حالت مولکولی (۱۴۲ کیلو جول/مول) (۱۴۲ کیلو جول/مول)
از الکترون‌های خاوی کلسیم (۳.۴۱) و انرژی بیونش
آن (۳۴۹ کیلو جول/مول) است. افزون بر آن، با افراش آلیش (پران
پور از ۷۵.۷۵ به ۱۵.۷۵ درصد) چهار برابر (۴:۲) شدت طیف

شکل ۷ طیف نوربینی (PL) نقاط کوانتوپی گرافن آلیش شده با پتانسیم، بور، نیتروزون و کلر نهشته شده بر زیرلایه گرافن

۵۰۱
جلد ۲۹، شماره ۲، تابستان ۱۴۰۰

[3] Niaifar M., 'Study of magnetic properties and Mössbauer spectroscopy of Y1-xBi2Fe5O12 prepared by sol-gel method', Iranian Journal of

a comparison with other SiC polytypes", Carbon 57 (2013) 477-484.

[31] Yazdi G.R., Vasiliaskas R., Iakimov T., Zakharov A., Syväjärvi M., Yakimova R., "Growth of large area monolayer graphene on 3C-SiC and