Iranian Journal of Crystallography and Mineralogy

روشها آب آلوده را با تخریب ترکیبهای آلی موجود در آن

تميز مي كنند [٣-٧]. در ميان اين روشها، فوتو كاتاليز به

دلیل توانایی آن در تجزیه مولکولهای رنگ آلی در فاضلاب به

مواد بی ضرر به طور گسترده به کار رفته است [۸، ۹].

فوتوكاتاليزورهاى نيمرسانا با يك منبع نور با طول موج ويژه

كار مىكنند تا با انتقال الكترونها به نوار رسانش و حفظ

حفرهها در نوار ظرفیت، جفت الکترون-حفره تولید کنند.

جفت الكترون-حفره توليد شده مجموعه اى از واكنشهاى

شیمیایی پیچیده را بر روی سطوح نیمرسانا آغاز میکند که

منجر به تخریب آلایندههای جذب شده و همچنین حذف

مقاله پژوهشی

مجله بلورشناسی وکانی شناسی ایران سال سی و دوم، شمارهٔ دوم، تابستان ۱۴۰۳، از صفحهٔ ۳۷۹ تا ۳۹۲

# سنتز و مشخصهیابی نانوفوتوکاتالیزور قابل بازیافت Ag2S/ZnS پوشش داده شده با نانوذرات Fe3O4 در تخریب رنگ متیل قرمز

محبوبه بیگمرادی<sup>۱</sup>، پروانه ایرانمنش<sup>\*۱</sup>، سمیرا سعیدنیا <sup>۲</sup>

۱ - گروه فیزیک، دانشگاه ولیعصر (عج) رفسنجان، رفسنجان، ایران
 ۲ - گروه شیمی، دانشگاه ولیعصر (عج) رفسنجان، رفسنجان، ایران
 (دریافت مقاله: ۱۴۰۲/۸/۲۴، نسخه نهایی: ۳۰/۱۰/۳۰)

**چکیده**: در این پژوهش، نخست نانو کامپوزیت Ag<sub>2</sub>S/ZnS به وسیله نانوذرات نقره به همراه ZnS سنتز شد سپس با بارگذاری مگنتایت روی آن، نانو کامپوزیت مغناطیسی Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> به روش همرسوبی شیمیایی تهیه گردید. برای بررسی ویژگیهای ساختاری و ریختاری این نانو کامپوزیت ها از روشهای مختلفی از جمله پراش پرتوی ایکس، طیف سنجی تبدیل فوریه فروسرخ (FTIR)، میکروسکوپی الکترونی عبوری، طیف سنجی نورتابی و تخلخل سنجی استفاده شد. الگوی پراش پرتو x با قلههای مشخصه ساختار مکعبی ZnS، 40 و ساختار تک میل Ag<sub>2</sub>S/ZnS را تایید کرد. تحلیل FTIR به خوبی تشکیل پیوندهای شیمیایی مولکول ها را نشان داد. تخلخل نانو کامپوزیت ها و حضور مزو حفره ها به روش برونر امیت-تلر (BET) تایید شد. شدت قله نورتابی نانو کامپوزیت داد. تخلخل نانو کامپوزیت ها و حضور مزو حفره ها به روش برونر امیت-تلر (BET) تایید شد. شدت قله نورتابی نانو کامپوزیت طول عمر الکترون-حفره است. این رخداد باعث افزایش عملکرد فوتو کاتالیزوری Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> شد. در آخر، میزان تخریب رنگ متیل قرمز توسط این فوتو کاتالیزورها بررسی شد که نانو کامپوزیتهای Ag<sub>2</sub>S/ZnS و مولکور ای تخریب رنگ تریس موتر کین موتو کاتالیزورها برسی شد که نانو کامپوزیت Ag<sub>2</sub>S/ZnS رون می برونر بازیر کیب جفت الکترون - خفره و افزایش متیل قرمز توسط این فوتو کاتالیزورها بررسی شد که نانو کامپوزیتهای Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> میزان تخریب رنگ تابش نور فرابنفش به ترتیب ۶۰/۹ در می ۹ در مدت زمان ۷۵ دقیقه تخریب کردند.

واژههای کلیدی: نانو کامپوزیت؛ مگنتایت؛ Ag<sub>2</sub>S/ZnS؛ روشBET؛ عملکرد فوتو کاتالیزوری.

#### مقدمه

آلودگی محیط زیست طبیعی در حال حاضر به دلیل پیشرفت سریع فناوری و انقلاب صنعتی یک نگرانی عمده است. به ویژه آلودگی آبهای طبیعی خطر قابل توجهی برای سلامتی است و بر کیفیت زندگی انسان و اکوسیستم اثر میگذارد [۱، ۲]. تخلیه پسابهای صنعتی دربردارنده سموم مختلف از منابع اصلی آلاینده در منابع آبی است. برای حل این مشکل از روشهای مختلفی از جمله فرامرکز گریزی، ته نشینی، صافی، جذب کربن فعال، تصفیه ازن، روشهای گرانشی و شناوری، اکسایش، اسمز معکوس و فوتوکاتالیز استفاده شده است. این

\*نویسنده مسئول، تلفن ۹۱۵۵۱۱۷۵۸۴ نمابر: ۰۳۴۳۱۳۱۲۴۲۹، پست الکترونیکی: p.iranmanesh@vru.ac.ir

Copyright © 2024 The author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (<u>https://creativecommons.org/licenses/by-nc/4.0/</u>) Non-commercial uses of the work are permitted, provided the original work is properly cited

چونسطح ویژه بزرگ و جداسازی ساده با میدان مغناطیسی باكترىها و برخى ويروسها طى تصفيه ثانويه فاضلاب مى شود. خارجی، کاربردهای مختلفی دارند. یکی از این نانوذرات تاكنون چند فوتوكاتاليزور نيمرسانا چون سولفيدها [١٣-١٠]، اکسیدها [۱۴–۱۹] و اکسی نیتریدها [۲۰–۲۳] برای تخریب مغناطیسی، اکسید آهن است که ساختار بلوری اسپینل معکوس دارد. این ماده زیستسازگار و غیر سمی است، از این آلایندههای آلی سمی در فاضلاب بررسی شدهاند. هدف اصلی ارائه یک فوتوکاتالیزور موثر، کارآمد، ارزان و در دسترس است رو در بسیاری از موارد چون کاربردهای مغناطیسی با اشباع بالا برای انتقال ذرات با میدان مغناطیسی متناوب و کاربردهای که بتوان آن را بازیابی کرد و در واکنش دوباره استفاده کرد. پزشکی استفاده می شود. هم چنین این ماده در نانوذرات این دسته از مواد توانایی بالایی برای بهبود عملکرد و هسته/پوسته به همراه سایر نانوذرات برای ارائه ویژگیهای قابلیتهای گسترده فراورده ها در برخی از بخشهای صنعتی مغناطیسی به نانوذرات همراه، استفاده می شود [۲۹]. بررسی-به ویژه در الکترونیک دارد. نیمرساناهای سولفید نقره (Ag<sub>2</sub>S) های گستردهای برای دستیابی به انواع ساختارهای کامپوزیتی و سولفید روی (ZnS) به طور گسترده برای ساخت دستگاههای الکترونیکی مدرن استفاده میشوند. گسترش با عملکرد بهتر نسبت به اجزای جداگانه آنها انجام شده است. لی و همکاران کامیوزیت هسته-یوسته Ag<sub>2</sub>S/ZnS را با یک نانوکامیوزیتهای نیمرسانا شامل نانوذرات Ag<sub>2</sub>S و ZnS امکان فرآیند گرمابی ساده سنتز کردند و اثر  $Ag_2S$  را بر ساختار، تنظیم گاف نواری را برای چنین ساختارهای نامتجانسی فراهم می کند [۲۴]. Ag<sub>2</sub>S اغلب با دیگر کاتالیزورهای نیمرسانا ریختار و ویژگیهای نوری بررسی کردند [۳۰]. آنها دریافتند ترکیب می شود تا یک فوتوکاتالیزور مرکب را تشکیل دهد که که کارایی فوتوکاتالیزوری کامپوزیت Ag<sub>2</sub>S/ZnS برای تجزیه محلول آبی رودامین B بسیار بالاتر از ZnS یا Ag<sub>2</sub>S خالص عملکرد فوتوکاتالیزوری را بهبود ببخشد. این ماده دارای گاف زیر تابش نور مرئی است [۳۰]. ژانگ و همکاران نانوکامپوزیت نواری کوچکی بین ۰٫۹ تا ۱٬۰۵ eV است که آن را به یک ماده ZnS-Ag<sub>2</sub>S را با روش گرمابی دو مرحله ای سنتز کرده و نیمرسانا برای کاربردهای فوتوکاتالیزوری زیر تابش مرئی و ویژگیهای فوتوکاتالیزوری بسیار خوبی را مشاهده کردند [۳۱]. فروسرخ نزدیک (NIR) تبدیل میکند. با این حال، چند عیب ویژگیهای ساختاری و تغییرات ریختاری با تنظیم نسبت وزنی این کاتالیزور چون انباشت ذرات، اکسایش آسان و جداسازی پیشسازهای ZnS و AgNO<sub>3</sub> شد. آنها ویژگیهای دشوار ممكن است عملكرد كاتاليزورى آن را محدود كند [٢۵]. در میان نیمرساناهای مورد بررسی، سولفیدهای فلزی به دلیل فوتوکاتالیزوری نمونههای به دست آمده را بر پایه تخریب رنگ متیل نارنجی بررسی کرده و نتیجه گرفتند که اصلاح سطح داشتن گاف نواری مناسب، امیدوارکننده ترین عملکرد را برای کرههای ZnS با  $Ag_2S$  منجر به افزایش فعالیت تصفیه آب در زیر نور مرئی نشان دادهاند. به ویژه، ZnS به فوتوکاتالیزوری در مقایسه با ZnS خالص شده است. افزون بر دلیل توانایی منفی بالای الکترونهای برانگیخته و تولید سریع این، این روش را می توان برای تهیه سایر کاتالیزورهای جفت الكترون-حفره و همچنين غيرسمي بودن، سازگاري با کامپوزیتی بر پایه بر سولفید نیز گسترش داد [۳۱]. به طور محیطزیست و پایداری بالا، از بهترین فوتوکاتالیزورها شناخته مشابه، ترکیبهای کامپوزیت ZnS جدید چون TiO<sub>2</sub>/ZnS می شود [۲۶]. افزون بر این، ZnS یک ماده مفید و کارآمد [٣۵] ZnS–CuS ،[٣۴] ZnS/ZnO .[٣٣] ZnS/CdS .[٣٢] است، اما برخی اشکالهای اساسی نیز دارد، از جمله سطح و [ZnS-CoFe<sub>2</sub>O<sub>4</sub>] [78]، برای کاربردهای مختلف سنتز محدود، بازده جداسازی ضعیف و توانایی کم برای انتقال شدهاند. از این رو، ZnS-Ag<sub>2</sub>S یک ساختار نامتجانس شناخته حاملها با تحریک نور [۲۷]. به احتمال بسیار بهترین روش شده برای بررسی ویژگیهای ساختاری و نوری است [۳۷ و جایگزین برای غلبه بر این اشکالها، تشکیل نانوساختارهای ۳۸]. در سال ۲۰۲۱، وانگ و همکارانش از یک کامپوزیت مرکب است. ساختارهای نامتجانس شامل بیش از یک جزء مغناطيسى آلاييده با نانوذرات نقره براى تجزيه كاتاليزورى فعال، برای کاربردهای عملی جذاب هستند، هم محاسبههای متيلن آبي، ۴-نيتروفنول و رودامين B استفاده كردند [۳۹]. نظری و هم نتایج تجربی ویژگیهای نوری قابل توجه این نانوکامپوزیت با یک روش دو مرحله ای تهیه شد. در مرحله نانوساختارهای مرکب را در مقایسه با اجزای جداگانه آنها نخست، ریزکرههای مغناطیسی اصلاح شده با گروههای تایید میکنند [۲۸]. نانوذرات مغناطیسی به دلیل ویژگیهایی

ریزامولسیونی سنتز شدند. سپس یونهای نقره در سطح ریزکرههای PS@Fe<sub>3</sub>O<sub>4</sub> جذب و بازسازی گردیدند. برای بررسی عملکرد کاتالیزوری این نانوکامپوزیت، آزمایشهای تجزیه متیلن آبی، ۴-نیتروفنول و رودامین B در حضور NaBH4 انجام شد [۳۹]. بازده کاتالیزوری این ماده به سطح ویژه بالای آن مربوط می شود. کاتالیزور Ag@PS@Fe<sub>3</sub>O<sub>4</sub> به دلیل پراکندگی خوب و بارگذاری بالای نانوذرات نقره، جایگاههای فعال بسیاری داشت و از این رو، قابل پیش بینی بود که عملکرد کاتالیزوری خوبی از خود نشان دهد. در سال ۲۰۲۰، گوا و همکارانش ساختار نامتجانس Ag/MoS<sub>2</sub> Defective/a-Fe<sub>2</sub>O<sub>3</sub> را به روش گرمابی سنتز کردند که عملکرد بسیار خوبی در تخریب فوتوکاتالیزوری فنتون و اسید سالیسیلیک تحت تابش نور مرئی و نور NIR-Vis نشان داد [۴۰]. به روشنی دیده شده است که توانایی جذب نوری-α ترکیب شده با مواد دیگر به طور قابل<br/>توجهی بهبود Fe\_2O\_3 مییابد [۴۰]. خراسانی پور و همکاران عملکرد فوتوکاتالیزوری نانوكامپوزيت ZnS/MoS<sub>2</sub> پوشش داده شده با نانوذرات را بررسی کردند و نتیجه گرفتند که نانوکامپوزیت  ${\rm Fe}_3{
m O}_4$ ZnS/MoS<sub>2</sub>/ Fe<sub>3</sub>O<sub>4</sub> رنگهای متیل نارنجی و اسید قهوه ای را زیر تابش نور فرابنفش در مدت ۹۰ دقیقه به ترتیب ۸۵٬۶۰ و ۸۳٬۳۳ درصد تخریب میکند [۴۱]. به نظر می رسد که تهیه نانوفوتوكاتاليزور مغناطيسى قابل استفاده دوبارهبراى تجزيه رنگهای آلی ضروری باشد. این گونه نانوساختارها افزون بر عملکرد فوتوکاتالیزوری خوب در حضور نور خورشید، به دلیل ویژگیهای مغناطیسی به راحتی و به طور کامل از مخلوط واكنش جدا می شدند و قابل استفاده دوباره هستند.

کر ہوکسیل COOH-PS@Fe<sub>3</sub>O<sub>4</sub> با پلیمری شدن

در این پژوهش، نخست نانوذرات نقره سنتز شدند، سپس نانوذرات نقره به روش همرسوبی شیمیایی با نانوذرات ZnS کامپوزیت شده و نانوکامپوزیت Ag<sub>2</sub>S/ZnS را تشکیل دادند. در مرحله آخر، نانوکامپوزیت Ag<sub>2</sub>S/ZnS با نانوذرات مغناطیسی Fe<sub>3</sub>O4 پوشانده شده و نانو فوتوکاتالیزور مغناطیسی مغناطیسی Ag<sub>2</sub>S/ZnS یوشانده شد. سنتز موفق ساختار سه تایی با روشهای مختلف تایید شد. سپس پارامترهای مؤثر بر بازده واکنشهای تخریب فوتوکاتالیزوری شامل مقدار ماده، مقدار رنگ و PH بهینه شدند. چنان که بیان شد، در این پژوهش از نانوکامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 در تخریب نوری متیل قرمز

زیر تابش نور مرئی و فرابنفش استفاده شد، نانوکامپوزیت 442 Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 یک ماده زیست سازگار و غیر سمی است. این نانوکامپوزیت سهتایی به روش آسان و ارزان همرسوبی شیمیایی سنتز شد و دارای ویژگیهای شگفتانگیزی از جمله روش سنتز آسان، سمیت کم، فعالیت سطحی بالا و قابل بازیابی و استفاده دوباره است که میتواند برای تصفیه پسابهای صنعتی مفید باشد.

### سنتز و مشخصهیابی مواد

مواد مورد استفاده برای سنتز نانو کامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> عبارت بودند از: استات روی (Na<sub>2</sub>S.9H<sub>2</sub>O)، سولفید دی سدیم (Na<sub>2</sub>S.9H<sub>2</sub>O)، اتیلن دی آمین تترا استیک اسید (C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>8</sub>Am)، ایا (C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>8</sub>Am) یا EDTA محلول آمونیاک (H<sub>1</sub>ON)، تیوره (L<sub>10</sub>CSNH<sub>2</sub>)، اسید نیتریک (HNO<sub>3</sub>)، کلرید آهن دو ظرفیتی (FeCl<sub>2</sub>)، کلرید آهن سه ظرفیتی (FeCl<sub>3</sub>)، آب یون زدایی شده، اتانول، نیترات نقره (AgNO<sub>3</sub>)، گلوکز (C6H<sub>12</sub>O<sub>6</sub>)، پلی وینیل پیرولیدون نقره (PVP)، هیدروکسید سدیم (NaOH)، متیل قرمز (Methyl Red). معتبر تهیه شدند.

### سنتز نانوذرات Ag

نانوساختار نقره به روش همرسوبی شیمیایی تهیه شد. نانوذرات نقره با احیای نیترات نقره در محلول آبی پلی وینیل پیرولیدون تولید شدند. از گلوکز به عنوان عامل کاهنده و از هیدروکسید سدیم نیز برای تسریع واکنش استفاده شد. نخست محلول A با حل کردن ۲٫۴ گرم نیترات نقره در ۲۰ میلی لیتر آب مقطر و محلول B با ترکیب PVP، گلوکز و هیدروکسید سدیم در ۶۰ میلی لیتر آب تهیه شدند. محلولها در دمای ۶۰ درجه سانتی گراد هم زده شده و سپس محلول A به آرامی به محلول B اضافه گردید و به مدت ۱۰ دقیقه هم زده شد. ذرات با دستگاه فرامرکز گریز جدا شدند و فراورده چند بار با آب مقطر شسته شد تا اثر یون منفی NO<sub>3</sub> به طور کامل از بین رفت. الگوی XRD تشکیل ساختار بلوری Ag را تایید کرد.

### منتز نانوكامپوزيت Ag<sub>2</sub>S/ZnS

نانوکامپوزیت Ag<sub>2</sub>S/ZnS به روش همرسوبی سنتز شد؛ به این صورت که مقدار ۰٫۱ مولار از Ag سنتز شده با ۲۰ میلیلیتر آب مقطر مخلوط گردید سپس محلولهای استات روی و

EDTA به طور همزمان به آن اضافه و هم زده شدند. محلول EDTA قطره قطره به این محلول اضافه شد سپس با افزودن Na<sub>2</sub>S قطره قطره به این محلول اضافه شد سپس با افزودن محلول آمونیاک، pH محلول نهایی به ۷ رسید. پس از هم زدن، رسوب تشکیل شده در چند مرحله فرامرکز گریزی و با آب مقطر شستوشو شد و سپس رسوب به مدت ۲۴ ساعت در مای ۱۱۰ درجه سانتی گراد در کوره خشک گردید. در این مرحله، نانوکامپوزیت دوتایی Ag<sub>2</sub>S/ZnS ساخته و مشخصه یابی شد.

#### سنتز نانوكامپوزيت مغناطيسي نامتجانس Ag2S/ZnS/Fe3O4

برای سنتز نانوکامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 ، مقدار ۰٫۱ مولار از ماده ساخته شده در مرحله پیشین با ۲۰ میلیلیتر آب مقطر مخلوط و در دستگاه فراصوت پراکنده شد، سپس محلولهای FeCl<sub>3</sub> و FeCl<sub>1</sub> با نسبت مولی دو به یک آماده شده و به طور همزمان به سوسپانسیون Ag<sub>2</sub>S/ZnS اضافه شدند. در مرحله بعد، PH محلول با افزودن قطره قطره محلول آمونیاک در مقدار ۹ تنظیم شد. در آخر، رسوب تشکیل شده با آهنربا جمع آوری و با آب مقطر شستوشو شد و پس از خشک شدن در کوره، مشخصه یابی گردید.

### تهیه نمونهها برای بررسی ویژگی فوتوکاتالیزوری

تخریب رنگ متیل قرمز با نانوکامپوزیت سه تایی Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> بررسی شد. به این ترتیب، ۲۰ میلی گرم فوتوکاتالیزور به محلول ۲۰ ppm ۲۰ متیل قرمز اضافه شد و عملکرد تخریب رنگ در PH های اسیدی، قلیایی و خنثی که با استفاده از آمونیاک و اسید نیتریک تنظیم شده بودند، بررسی گردید. پس از افزودن فوتوکاتالیزور به رنگ، محلول در تاریکی قرار گرفت و به مدت حدود یک ساعت هم زده شد تا جذب/واجذبهای سطحی صورت گرفته و به حالت تعادل برسد. پس از آن، محلول در معرض تابش نورهای فرابنفش و مرئی قرار گرفت و در گستره زمانی مشخص ۱۵ دقیقه، مقداری از محلول برای بررسی میزان تخریب رنگ برداشته و با طیف سنچ بررسی شد. سرانجام، فوتوکاتالیزور برای استفاده دوباره با

### روشهای مشخصه یابی

ویژگیهای ساختاری، ریختشناسی، نوری و سرانجام فوتوکاتالیزوری نمونههای سنتز شده بررسی گردید. مشخصه-یابی ساختاری و ریختشناسی آنها با پراشسنج پرتو ایکس (XRD) مدل ایکسپرتپرو شرکت پآنالتیکال، طیفسنج تبدیل

فوریه فروسرخ (FTIR) مدل نیکلتیس شرکت ترموساینتفیک، میکروسکوپ الکترونی تراگسیلی (TEM) مدل ایام 40 100 شرکت زایس، جذب و واجذب سطحی نیتروژن با دستگاه مدل بلسرپ شرکت میکروتراک بل کراپ و طیفسنج نورتابی (PL) مدل کاری اسلیپس شرکت واریان انجام شدند.

# نتایج و بحث

## الگوی پراش پرتو X

الگوی پراش پرتوی X یک روش استاندارد برای تشخیص فازهای ماده و ساختار آنها و همچنین تعیین میانگین فواصل بین اتمی و ویژگیهای ساختاری شامل ثابتهای شبکه، اندازه و شکل بلورهاست [۴۲]. شکل ۱ الگوی پراش پرتوی X نانوکامپوزیتهای  $Ag_2S/ZnS/Fe_3O_4$  و  $Ag_2S/ZnS/Fe_3O_4$  را نشان میدهد. الگوهای XRD با قلههای مشخصه با ساختار تک ميل Ag<sub>2</sub>S، ساختار مكعبى Fe<sub>3</sub>O4 و ZnS همخواني خوبي دارند. وجود قلههای پراش ZnS در ۲۸٬۵۸، ۳۲٬۱۲، ۴۷٬۵۳ و ۵۶٬۴۲ درجه مربوط به صفحههای یراشی (۱۱۱)، (۲۰۰)، (۲۲۰) و (۳۱۱) فاز بلند روی و گروه فضایی مکعبی f4-3m مطابق با کارت استانداردJCPDS شماره ۷۷-۲۱۰۰، شواهد قانع کننده ای از بارگذاری موفق ZnS روی  $Ag_2S$  هستند [۴۳]. قلههای در ۲۰٬۱۶، ۳۵٬۵۲، ۴۳٬۱۷، ۵۷٬۱۰ و ۶۲٬۷۱ و درجه مربوط به صفحههای پراشی (۲۲۰)، (۳۱۱)، (۴۰۰)، (۵۱۱) و (۴۴۰) ساختار مکعبی Fe<sub>3</sub>O<sub>4</sub> و گروه فضایی مکعبی Fd-3m مطابق کارت استاندارد JCPDS با شماره ۷۶-۹۵۸ [۴۴] و قلههای در ۳۶٬۸۰، ۳۷٬۱۰ و <sup>°</sup> ۴۴٬۲۱ مربوط به صفحههای پراشی (۱۲۱)، (۰۱۳) و (۱۰۳) مربوط به ساختار تک میل  $Ag_2S$  با گروه فضایی p21/n مطابق با کارت استاندارد JCPDS شماره ۱۴۱۵–۹۰۱–۹۶ هستند [۴۵، ۴۶]. هیچ قله مشخصهای که به ناخالصی یا فازهای ناخواسته نسبت داده شود در الگوی پراش پرتوی X دیده نشد.

### تحليل نتايج طيف تبديل فوريه فروسرخ

طیف FTIR نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 در شکل ۲ آورده شده است. قلههای در حدود ۳۴۵۰ و ۱۵۹۹ cm<sup>-1</sup> به ترتیب مربوط به مدهای ارتعاشی کششی و خمشی پیوندهای H-O-H آب جذب شده در سطح این ترکیب است [۴۷]. قله های در ۴۵۱ و cm<sup>-1</sup>. ۶۱۷ مربوط به پیوندهای شیمیایی Ag<sub>2</sub>S هستند [۴۵]. قله در <sup>1</sup>-D-۲ مربوط به حالت ارتعاش خمشی Zn-S

نانوذرات سولفید روی است که تشکیل نانوکامپوزیت Ag<sub>2</sub>S/ZnS را تایید میکند [۴۳]. با بارگذاری مگنتیت، قله جدیدی در <sup>I-1</sup> ۴۹۹ ظاهر شده که مربوط به حالت ارتعاش خمشی Fe-O در نانوذرات مگنتیت است. همچنین قلههای

بارگذاری نانوکامپوزیت Ag<sub>2</sub>S/ZnS به دلیل پیش ساختار جدید کمی جابه جا شده و به دلیل همپوشی با هم، برخی قلهها حذف شدهاند که نشاندهنده تشکیل نانوکامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> و بارگذاری موفق Fe<sub>3</sub>O<sub>4</sub> است [۴۶، ۴۸].



شکل۱ الگوی پراش پرتوی X نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 و شاخصهای میلر مربوط به هر یک.



شكل۲ طيف تبديل فوريه فروسرخ نانوكامپوزيتهاى Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub>.

### تصاوير ميكروسكوپ الكترونى تراگسيلى

تصاویر TEM برای بررسی ریختار و تعیین اندازه کامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS ثبت شدند. نتایج این آنالیز در شکل ۳ نشان می دهد که نانوذرات Ag<sub>2</sub>S دارای ریختار کروی هستند و به خوبی در قالب نانوکامپوزیت پراکنده شدهاند. نانوذرات ZnS نیز دارای ریخت کروی و منظمی هستند که روی سطح ریزکرههای Ag<sub>2</sub>S قرار گرفتهاند (شکل ۳ الف). شکل ۳ ب نشان دهندهی شکل ظاهری نانوکامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 بوده که از بارگذاری Fe<sub>3</sub>O4

روی کامپوزیت  $Ag_2S/ZnS$  تشکیل شده است. طیف پراکندگی انرژی پرتوی X (EDX) نانوکامپوزیتها در شکل-های  $\pi$  پ و ت، آورده شده است. شدید بودن قله Zn نسبت به Ag نشان میدهد که ZnS روی سطح  $Ag_2S$  قرار گرفته است. نمودار توزیع اندازه ذرات به خوبی با تابع گاوسی همخوانی دارد که نشان می دهد که ذرات به طور یکنواخت توزیع شده اند و اندازه متوسط ذرات به ترتیب حدود ۹ و ۲۶ نانومتر برای نانوکامپوزیت های Ag\_2S/ZnS و Ag\_3O<sub>1</sub> است (شکل  $\pi$  ث و ج).



**شکل ۳** تصاویر TEM (الف) Ag<sub>2</sub>S/ZnS و (ب) Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> نتایج EDX (پ) Ag<sub>2</sub>S/ZnS و (ت) Ag<sub>2</sub>S/ZnS و منحنی توزیع اندازه ذرات نانوکامپوزیت های (ث) Ag<sub>2</sub>S/ZnS و (ج) Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub>.

#### طيف نورتابي

طول عمر حاملهای بار القایی نقش مهمی در بهبود عملکرد فوتوکاتالیزوری دارد. از این رو، طول عمر حاملهای بار در نانوكامپوزيتهاى فوتوكاتاليزورى بايد افزايش يابد، به بيان دیگر، باید بازده بازترکیب حاملها کاهش یابد. طیفسنجی نورتابی میتواند برای بررسی جداسازی بار و بازده انتقال حاملها به سطح نمونه استفاده شود [۴۹]. طيف نورتابي نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS وAg<sub>2</sub>S/Fe<sub>3</sub>O<sub>4</sub> در دمای اتاق با طول موج برانگیختگی ۲۸۰ نانومتر در شکل ۴ آورده شده است. طیف نورتابی دو نانوکامپوزیت، دو قله متفاوت در حدود ۳۲۰ و ۶۴۰ نانومتر نشان میدهد. شدت قله نانوكامپوزيت Ag<sub>2</sub>/ZnS/Fe<sub>3</sub>O<sub>4</sub> كمتر از نانوكامپوزيت Ag<sub>2</sub>S/ZnS بوده که نشان دهنده کاهش موثر بازترکیب جفت الكترون-حفره و افزايش طول عمر الكترون-حفره است. در واقع،  $Fe_3O_4$  بارگذاری شده روی  $Ag_2S/ZnS$  میتواند مانع بازتركيب الكترون-حفره شود. اين رخداد باعث افزايش فعاليت فوتوكاتاليزورى Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 مى شود [٣٣].

### جذب و واجذب سطحی نیتروژن

برای به دست آوردن ظرفیت جذب نانوکاتالیزور نسبت به آلاینده، سطح ویژه به روش BET برای نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS محاسبه شد. BET در

واقع نشان دهنده رفتار مولکولهای گاز در پدیدهی جذب سطحی روی سطوح جامد و محاسبه سطح ویژه مواد جاذب سطحی است. نتایج مربوط به سطح ویژه نانوکامپوزیتها که در جدول ۱ آمده است با استفاده از معادله خطی BET تعیین شدهاند.

 $1/[(P_0/P) - 1] = (1/V_m C) + [(C-1)/V_m C] (P/P_0)$ (1)  $S_{BET} = V_m N/\sigma m \times 22414$ (Y)

این روابط،  $P/P_0$  فشار نسبی گاز جذب شده،  $V_m$  حجم مورد نیاز برای تشکیل تک لایه، N عدد آووگادرو،  $\sigma$  سطح مقطع گاز جذب شده (در این جا، نیتروژن)، m جرم نمونه و عدد ۲۲۴۱۴ حجم یک مول گاز جذب شده در شرایط استاندارد و SBET مساحت سطح ویژه است. بر این اساس، مساحت تقریبی برای مساحت سطح ویژه است. بر این اساس، مساحت تقریبی برای نانوکامپوزیت Ag<sub>2</sub>S/ZnS برابر با  $P_i^{0}$  ۸۴  $m^2/g$  و برای نانوکامپوزیت Ag<sub>2</sub>S/ZnS برابر با ۲۵/۱۷ m<sup>2</sup>/g و برای نانوکامپوزیت ۲۵/۱۷ m<sup>2</sup>/g برابر با ۲۵/۱۷ m<sup>2</sup>/g به دهنده متخلخل بودن آن است و ویژگیهای جذب و دفع 2 به اندازه کافی خوب نیست. با بارگذاری مگنتایت، سطح ویژه افزایش یافته است و نانوکامپوزیت Ag<sub>2</sub>S/ZnS میتواند در فرآیندهای کاتالیزوری و فوتوکاتالیزوری بازده بالاتری از خود نشان دهد. [۴۹].

| نمونه                                                | مساحت سطح ویژه<br>(m²/g) | حجم حفره ها<br>(cm³/g) | توزيع اندازه حفره ها<br>(nm) |
|------------------------------------------------------|--------------------------|------------------------|------------------------------|
| Ag <sub>2</sub> S/ZnS                                | ۶,۰ ۸۳                   | •,• TT                 | 10,.49                       |
| Ag <sub>2</sub> S/ZnS/Fe <sub>3</sub> O <sub>4</sub> | ۲۵,۱۷                    | ۶۳۶.                   | WV,814                       |

جدول ۱ مساحت سطح ویژه، حجم حفرهها و توزیع اندازه حفرهها برای دو نانوکامپوزیت Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4.



شكل ۴ طيف نورتابی نانوكامپوزيتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/Fe<sub>3</sub>O<sub>4</sub>.



 $Mag_2S/ZnS/Fe_3O_4$  منحنیهای BET نانوکامپوزیتهای  $Ag_2S/ZnS/Fe_3O_4$  و  $Ag_2S/ZnS/Fe_3O_4$ .

### ویژگی فوتوکاتالیزوری نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4

تخریب رنگ متیل قرمز با قله مشخصه ۴۸۰ نانومتر زیر تابش نورهای مرئی و فرابنفش با ثبت طیف جذب UV-Vis بررسی شد. با افزایش زمان تابش، شدت قله جذب کاهش مییابد که باعث کاهش غلظت رنگ یا به بیانی، تخریب رنگ میشود. برای تعیین درصد تخریب رنگ از رابطه (۱۰۰× (۲۵-۲۵)) استفاده شد که C0 و C1 به ترتیب جذب اولیه در زمان شروع فعالیت فوتوکاتالیزوری و پایانی بر پایه شدت جذب از نمونه پس از گذشت مدت زمان t از شروع واکنش هستند [۲۹، ۳۰].

#### نتایج برآمده از تخریب رنگ متیل قرمز

کارایی فوتوکاتالیزوری نانوکامپوزیتهای Ag<sub>2</sub>S/ZnS و Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 با تجزیه نوری رنگ متیل قرمز در مدت ۷۵ دقیقه زیر تابش نورهای مرئی و فرابنفش بررسی شد. نتایج تخریب رنگ این نانوکامپوزیتها زیر تابش نور فرابنفش در شکل ۶ نشان داده شده است. چنان که دیده میشود، بازده شکل ۶ نشان داده شده است. چنان که دیده میشود، بازده تخریب نوری Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 و Ag<sub>2</sub>S/ZnS است. متیل قرمز را زیر تابش نور فرابنفش، در مدت ۷۵ دقیقه به ترتیب ۴۰/۴۰ و ۹۰/۸۰ درصد تخریب کردند. شکل ۷ بازده

تخریب نوری  $Ag_2S/ZnS$  و  $Ag_2S/ZnS$  را زیر تابش نور مرئی در مدت زمان ۷۵ دقیقه نشان می دهد که رنگ متیل قرمز به ترتیب ///100 و //1000 را تخریب کردند. سطح ویژه بالاتر نانوکامپوزیت /0000 و //1000 باعث می شود که واکنش دهندههای بیشتری برای تخریب رنگ و عملکرد واکنش دهندههای بیشتری برای تخریب رنگ و عملکرد سریعتر واکنش فوتوکاتالیزوری تولید شوند [۱۷]. از سوی دیگر، شدت PL کمتر  $Ag_2S/ZnS/Fe_3O_4$  در مقایسه با دیگر، شدت PL کمتر  $Ag_2S/ZnS/Fe_3O_4$  در مقایسه با حفره کاهش یافته و طول عمر جفت الکترون–حفره بیشتر شده و در نتیجه بازده واکنش فوتوکاتالیزوری افزایش یافته است. تفاوت کم منحنیهای تخریب رنگ و زمان صفر مربوط به جذب و واجذبهای سطحی طی هم خوردن محلول واکنش در زمان تاریکی است.

### اثر pH بر تخریب رنگ متیل قرمز

اثر pH بر واکنشهای فوتوکاتالیزوری به طور گسترده بررسی شده است. تصفیه آب فوتوکاتالیزوری به شدت وابسته به pH است، زیرا pH بر بار ذرات کاتالیزور و موقعیت نوارهای رسانش و ظرفیت اثر دارد [۵۰]. برای بررسی اثر pH بر تخریب رنگ

متيل قرمز توسط فوتوكاتاليزور Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4، سه نوع محلول واکنش با pHهای اسیدی، خنثی و قلیایی مقایسه شدند که در شکل ۸ نشان داده شدهاند. تنظیم اولیه pH پیش از فوتوکاتالیز با آمونیوم و اسید نیتریک انجام شد. با تنظیم pH محلول از اسیدی به قلیایی، تجزیه رنگ در ۷۵ دقیقه از حدود ۹۹٪ به ۲۸٪ کاهش یافت. از این رو، محلول واکنش اسیدی با pH بهینه در آزمایشهای بعدی انتخاب شد. این نتایج نشان میدهد که تخریب رنگ به طور چشمگیری با افزایش pH كاهش مى يابد. اين روند را مى توان با اين واقعيت توضيح داد که در محلول واکنش با pH اسیدی، رنگ به دلیل افزایش جاذبه الكتروايستايي بين گونههاي آنيوني و كاتيوني با بيشترين یونش مولکولی مواجه می شود. افزون بر این، در pH قلیایی، یونهای هیدروکسیل باعث تشکیل ترکیبهای محلول در آب می شوند و در نتیجه، حذف رنگ به تأخیر می افتد. تولید رادیکال هیدروکسیل در محلول اسیدی کمی بیشتر از محلول قلیایی بوده و پایداری آن نیز بیشتر است، به طوری که فرآیند اکسایش در محلول اسیدی نسبت به قلیایی عملکرد بهتری دارد [۵۱].



**شکل ۶** منحنی تخریب رنگ متیل قرمز برای فوتو کاتالیزور (الف) Ag<sub>2</sub>S/ZnS و (ب) Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O4 زیر تابش نور UV در مدت ۷۵ دقیقه.



شکل ۷ بازده تخریب رنگ متیل قرمز برای فوتوکاتالیزورهای (الف) Ag<sub>2</sub>S/ZnS و (ب) Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> زیرتابش نورمرئی در مدت ۷۵ دقیقه.





**شکل ۸** بازده تخریب رنگ متیل قرمز برای فوتوکاتالیزور Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> زیر تابش نور فرابنفش در مدت ۷۵ دقیقه در (الف) pH=۳، (ب) pH=۹ و (پ) PH=۹.

برداشت

در این پژوهش، نخست نانوذرات نقره به روش هم رسوبی شیمیایی سنتز شدند سپس با استفاده از نانوذرات نقره و پیش مادههای روی و سولفور، نانوکامپوزیت Ag<sub>2</sub>S/ZnS به روش همرسوبی سنتز گردید و در ادامه نانوذرات Fe<sub>3</sub>O<sub>4</sub> به همین روش روی نانوکامیوزیت Ag<sub>2</sub>S/ZnS یوشش داده شدند سرانجام نانوكامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> به دست آمد. برای تایید سنتز موفق این نانوکامپوزیتها و بررسی ویژگیهای ساختاری و ریختاری آنها، از روشهای مختلفی از جمله TEM ،XRD ،FTIR و BET، استفاده شد. الكوى پراش پرتو ایکس حضور ساختار مکعبی را برای ZnS و Fe<sub>3</sub>O<sub>4</sub> و ساختار تک میل را برای Ag<sub>2</sub>S نشان داد. طیف تبدیل فوریه فروسرخ به خوبی ساختار این ترکیبها را تأیید کرد. تصاویر TEM تشکیل نانوکامیوزیتها و همچنین بارگذاری نانوذرات Fe<sub>3</sub>O<sub>4</sub> بر نانوکامپوزیت Ag<sub>2</sub>S/ZnS را نشان داد. در آزمایش BET، سطح ویژهی بیشتر نانوکامیوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> باعث می شود که واکنش دهنده های بیشتری مایل به انجام تخریب رنگ باشند و واکنش فوتوکاتالیزوری سریعتر انجام شود. در طيف نورتابي دو نانوکاميوزيت، شدت قله نانوکاميوزيت Ag<sub>2</sub>/ZnS/Fe<sub>3</sub>O<sub>4</sub> ضعيفتر از نانوكامپوزيت Ag<sub>2</sub>/ZnS بود كه نشان دهنده كاهش موثر بازده بازتركيب جفت الكترون-حفره و افزایش طول عمر الکترون-حفره است. در واقع، Fe<sub>3</sub>O<sub>4</sub> بارگذاری شده روی Ag<sub>2</sub>S/ZnS میتواند مانع بازترکیب الكترون-حفره شود و این رخداد باعث افزایش عملكرد فعاليت .مى شود Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> فوتوكاتاليزوري

فوتوکاتالیزوری نانوکامپوزیتها در تخریب رنگ آلی متیل قرمز بررسی گردید که دیده شد که نانوکامپوزیت Ag<sub>2</sub>S/Fe<sub>3</sub>O<sub>4</sub> Ag<sub>2</sub>S رنگ متیل قرمز را در مدت ۷۵ دقیقه زیر تابش نور فرابنفش به میزان ۸۲٬۸۰٬ و زیر تابش نور مرئی به میزان AT٬۷۰ تخریب کرد. نانوکامپوزیت Ag<sub>2</sub>S/ZnS/Fe<sub>3</sub>O<sub>4</sub> در تخریب رنگ آلی کارآمدتر است و همچنین به دلیل داشتن ویژگی مغناطیسی به راحتی با یک آهنربای ساده از محلول رنگ جدا شده و امکان استفاده دوباره فوتوکاتالیزور در تخریب رنگ با بازیافت مخلوط واکنش فراهم میشود. از این رو، رنگ با بازیافت مخلوط واکنش فراهم میشود. از این رو، است که میتواند رنگهای صنعتی را در محیط آبی حذف کند. **قدردانی** 

نویسندگان این مقاله بر خود لازم می دانند که از حمایتهای دانشگاه ولی عصر (عج) رفسنجان در انجام این پژوهش، تشکر و قدردانی نمایند.

#### مراجع

[1] Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J., Ahmad M. N., *"The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth"*, Journal of environmental management, 69 (2003) 229-238.

[2] Güy N., Atacan K., Karaca E., Özacar M., "Role of Ag<sub>3</sub>PO<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub> on the photocatalytic performance of magnetic Ag<sub>3</sub>PO<sub>4</sub>/ZnO/Fe<sub>3</sub>O<sub>4</sub> Journal of hazardous materials, 170 (2009) 520-529.

[11] Wang J., Li B., Chen J., Li, N., Zheng J., Zhao J., Zhu Z., "Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance", Journal of alloys and compounds, 535 (2012) 15-20.

[12] Peng S., Li L., Wu Y., Jia L., Tian, L., Srinivasan M., Mhaisalkar S. G., "*Size-and shapecontrolled synthesis of ZnIn*<sub>2</sub>*S*<sub>4</sub> *nanocrystals with high photocatalytic performance*", CrystEngComm, 15 (2013) 1922-1930.

[13] Meng X., Tian G., Chen Y., Zhai R., Zhou J., Shi Y., Fu, H., "*Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties*", CrystEngComm, 15 (2013) 5144-5149.

[14] Muruganandham M., Amutha R., Repo E., Sillanpää M., Kusumoto Y., Abdulla-Al-Mamun M. D. "Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye", Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 133-141.

[15] Madhusudana G., Kumar P. S., Kumar D. P., Srikanth V. V., Shankar M. V., "*Photocatalytic performance of rice grain shaped ZnO microrods under solar irradiation*", Materials Letters, 128 (2014) 183-186.

[16] Kumar D. P., Shankar M. V., Kumari M. M., Sadanandam G., Srinivas B., Durgakumari V., "Nano-size effects on CuO/TiO<sub>2</sub> catalysts for highly efficient  $H_2$  production under solar light irradiation", Chemical communications, 49 (2013) 9443-9445.

[17] Tang H., Zhang D., Tang G., Ji X., Li C., Yan X., Wu Q., "Low temperature synthesis and photocatalytic properties of mesoporous TiO<sub>2</sub> nanospheres", Journal of Alloys and Compounds, 591 (2014) 52-57.

[18] Liu Y., Jiao Y., Zhang Z., Qu F., Umar A., Wu X., "Hierarchical SnO<sub>2</sub> nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications", ACS applied materials & interfaces, 6 (2014) 2174-2184. nanocomposite under visible light irradiation", Solar Energy, 166 (2018) 308-316.

[3] Gupta V. K., Ali I., Saleh T. A., Nayak A., Agarwal S., "Chemical treatment technologies for waste-water recycling—an overview", Rsc Advances, 2 (2012) 6380-6388.

[4] Zeghioud H., Assadi A. A., Khellaf N., Djelal H., Amrane A., Rtimi S., "Photocatalytic performance of CuxO/TiO<sub>2</sub> deposited by HiPIMS on polyester under visible light LEDs: Oxidants, ions effect, and reactive oxygen species investigation", Materials, 12 (2019) 412.

[5] Nguyen-Tri P., Ghassemi P., Carriere, P., Nanda S., Assadi A. A., Nguyen D. D., "Recent applications of advanced atomic force microscopy in polymer science: A review", Polymers, 12 (2020) 1142.

[6] Assadi A. A., Bouzaza A., Wolbert D., "Study of synergetic effect by surface discharge plasma/TiO<sub>2</sub> combination for indoor air treatment: Sequential and continuous configurations at pilot scale", Journal of Photochemistry and Photobiology A: Chemistry, 310 (2015) 148-154.

[7] Azzaz A. A., Jellali S., Akrout H., Assadi A. A., Bousselmi L., "Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions", Journal of cleaner production, 201 (2018) 28-38.

[8] Kumar S. G., Devi L. G., "Review on modified TiO<sub>2</sub> photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics", The Journal of physical chemistry A, 115 (2011) 13211-13241.

[9] Kane A., Assadi A. A., El Jery A., Badawi A. K., Kenfoud H., Baaloudj O., Assadi A. A., "Advanced photocatalytic treatment of wastewater using immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: process intensification", Materials, 15 (2022) 4547.

[10] Akpan U. G., Hameed B. H., "Parameters affecting the photocatalytic degradation of dyes using TiO<sub>2</sub>-based photocatalysts: a review",

[28] Wei S., Wang Q., Zhu J., Sun L., Lin H., Guo Z., *"Multifunctional composite core-shell* 

nanoparticles", Nanoscale, 3 (2011) 4474-4502.

[29] Coey J. M., "*Magnetism and magnetic materials*", Cambridge university press, (2010).

[30] Li H., Xie F., Li W., Yang H., Snyders R., Chen M., Li, W., "Preparation and photocatalytic

activity of Ag<sub>2</sub>S/ZnS core–shell composites", Catalysis Surveys from Asia, 22 (2018) 156-165.

[31] Zhang H., Wei B., Zhu L., Yu J., Sun W., Xu L., "*Cation exchange synthesis of ZnS–Ag<sub>2</sub>S microspheric composites with enhanced photocatalytic activity*", Applied surface science, 270 (2013) 133-138.

[32] Franco A., Neves M. C., Carrott M. R., Mendonça M. H., Pereira M. I., Monteiro O. C., "Photocatalytic decolorization of methylene blue in

the presence of TiO<sub>2</sub>/ZnS nanocomposites", Journal of Hazardous Materials, 161 (2009) 545-550.

[33] Liu S., Wang Z., Liu H., Xu Q., "Hydrothermal synthesis and optical property of ZnS/CdS composites", Journal of Materials Research, 28 (2013) 2970-2976.

[34] Lin D., Wu H., Zhang R., Zhang W., Pan W., *Facile synthesis of heterostructured ZnO–ZnS* 

nanocables and enhanced photocatalytic activity", Journal of the American Ceramic Society, 93 (2010) 3384-3389.

[35] Yu J., Zhang J., Liu S., "Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres", The Journal of Physical Chemistry,114 (2010) 13642-13649.

[36] Senapati K. K., Borgohain C., Phukan P., "CoFe<sub>2</sub>O<sub>4</sub>–ZnS nanocomposite: a magnetically recyclable photocatalyst", Catalysis Science Technology, 2 (2012) 2361-2366.

[37] Ghosh Chaudhuri R., Paria S., "*Optical properties of double-shell hollow ZnS–Ag<sub>2</sub>S nanoparticles*", The Journal of Physical Chemistry C, 117 (2013) 23385-23390.

[38] Shen S., Zhang Y., Peng L., Du Y., Wang Q., "Matchstick-Shaped Ag<sub>2</sub>S–ZnS

Heteronanostructures Preserving both UV/Blue

[19] Karunakaran C., Raadha S. S., Gomathisankar P., "Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO<sub>2</sub> nanoparticles", Journal of alloys and compounds, 549 (2013) 269-275.

[20] Li X., Lu X., Meng Y., Yao C., Chen Z., "Facile synthesis and catalytic oxidation property of palygorskite/mesocrystalline Ce1–xMnxO<sub>2</sub> nanocomposites", Journal of alloys and compounds, 562 (2013) 56-63.

[21] Shankar M. V., Nélieu S., Kerhoas L., Einhorn J., "*Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: kinetics and pathways*", Chemosphere, 66 (2007) 767-774.

[22] Han C., Ge L., Chen C., Li Y., Xiao X., Zhang Y., Guo L., "Novel visible light induced  $Co_3O_4$ -g- $C_3N_4$  heterojunction photocatalysts for efficient degradation of methyl orange", Applied Catalysis B: Environmental, 147 (2014) 546-553.

[23] Shi S., Gondal M. A., Al-Saadi A. A., Fajgar R., Kupcik J., Chang X., ... Seddigi Z. S., *"Facile preparation of g-C<sub>3</sub>N<sub>4</sub> modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement"*, Journal of colloid and interface science, 416 (2014) 212-219.

[24] Sadovnikov S. I., Gerasimov E. Y., "Synthesis and Characterization of  $(Ag_2S)_x(ZnS)$ Heteronanostructures", In IOP Conference Series: Materials Science and Engineering (Vol. 1008, No. 1, p. 012019), (2020).

[25] Ruiz Gómez D., "Synthesis and characterization of Ag<sub>2</sub>S-based nanoparticles as luminescence nanothermomethers", (2019).

[26] Fang X., Wu L., Hu, L., "ZnS nanostructure arrays: a developing material star", Advanced Materials, 23 (2011) 585-598.

[27] Wang, Q., Wang, H., Yang Y., Jin L., Liu Y., Wang Y., Zhang H., "*Plasmonic Pt superstructures* with boosted near-infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy", Advanced Materials, 31 (2019) 1904836. *effectual nonlinear optical material*", Optik, 170 (2018) 10-16.

[46] Solomon G., Mazzaro R., You S., Natile M.M., Morandi V., Concina I. and Vomiero A., "Ag<sub>2</sub>S/MoS<sub>2</sub> nanocomposites anchored on reduced graphene oxide: Fast interfacial charge transfer for hydrogen evolution reaction", ACS applied materials and interfaces 11 (2019) 22380-22389.

[47] Liu H., Guo W., Li Y., He S., He C., "Photocatalytic degradation of sixteen organic dyes by TiO<sub>2</sub>/WO<sub>3</sub>-coated magnetic nanoparticles under simulated visible light and solar light", Journal of Environmental Chemical Engineering, 6 (2018) 59-67.

[48] Zahedifar M., Shirani M., Akbari A., Seyedi N., "Green synthesis of  $Ag_2S$  nanoparticles on cellulose/Fe<sub>3</sub>O<sub>4</sub> nanocomposite template for catalytic degradation of organic dyes", Cellulose, 26 (2019) 6797-6812.

[49] Kalpana K., Selvaraj V., "ZnS/SnS/Ag<sub>2</sub>S photocatalyst with enhanced photocatalytic activity under visible light illumination towards wastewater treatment", Research on Chemical Intermediates, 43 (2017) 423-435.

[50] Jiang Y., Pétrier C., Waite T. D., "Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution", Ultrasonics sonochemistry, 9 (2002) 163-168.

[51] Liu Y., Zhu K., Su M., Zhu H., Lu J., Wang Y., Zhang Y., *"Influence of solution pH on degradation of atrazine during UV and UV/H*<sub>2</sub>O<sub>2</sub> *oxidation: Kinetics, mechanism, and degradation pathways"*, RSC advances, 9 (2019) 35847-35861.

*and Near-Infrared Photoluminescence*", Angewandte Chemie, 123 (2011) 7253-7256.

[39] Wang Y., Gao P., Wei Y., Jin Y., Sun S., Wang Z., Jiang Y., "Silver nanoparticles decorated magnetic polymer composites (Fe<sub>3</sub>O<sub>4</sub>@ PS@ Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes", Journal of Environmental Management, 278 (2021) 111473.

[40] Guo M., Xing Z., Zhao T., Qiu Y., Tao B., Li Z., Zhou W., *"Hollow flower-like polyhedral α-Fe*<sub>2</sub>*O*<sub>3</sub>/*Defective MoS*<sub>2</sub>/Ag *Z*-scheme heterojunctions with enhanced photocatalytic -*Fenton performance via surface plasmon resonance and photothermal effects"*, Applied Catalysis B: Environmental, 272 (2020) 118978.

[41] Khorasanipour N., Iranmanesh P., Saeednia S., Yazdi S. T., "Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable  $ZnS/MoS_2/Fe_3O_4$  magnetic nanocomposite", Surfaces and Interfaces, 36 (2023) 102613.

[42] Guinebretière R., "X-ray diffraction by polycrystalline materials", John Wiley & Sons (2013).

[43] Riazian M., Yousefpoor M. "Photodegradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method", Iranian Journal of Health and Environment, 14 (2021) 1-18.

[44] Yao Y., Gao B., Wu F., Zhang C., Yang L., *"Engineered biochar from biofuel residue:* 

characterization and its silver removal potential", ACS Appl. Mater. Interfaces 7 2015 10634–10640. [45] Kannan K., Prasad L. G., Agilan S., Muthukumarasamy N., "Investigations on Ag<sub>2</sub>S/PVA-PEG polymer nanocomposites: An