Volume 31, Issue 2 (5-2023)                   www.ijcm.ir 2023, 31(2): 305-318 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Torabi G, Salim H, Shirdashtzadeh N. Mineralogy of the Lower Oligocene alkali basalts and their sillimanitite xenoliths (SW of Jandaq, Isfahan Province, Central Iran). www.ijcm.ir 2023; 31 (2) :305-318
URL: http://ijcm.ir/article-1-1777-en.html
1- Department of Geology. University of Isfahan. Isfahan. Iran
2- Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
Abstract:   (865 Views)
Along Toveireh Fault, in the northwest of Central-East Iranian Microcontinent, the Oligocene alkali-basalt outcrop was investigated for petrography and mineral chemistry. They include phenocrystals of chrysolite (Fo7090), augite-diopside (Mg#=0.82) and labradorite (An30-70) in a fine-grained matrix of the same minerals as pheoncrysts, together with sanidine and secondary minerals (serpentine and zeolite), as well as opaque minerals. These rocks contain sillimanitite xenoliths which are mostly composed of fibrous and prismatic sillimanites, together with minor amount of corundum, and secondary minerals (chlorite and scapolite). Xenoliths show granoblastic, nematoblastic, poikiloblastic, and corona textures. These high-Al and moderately silica-rich xenoliths were probably formed by metamorphism of continental crust sedimentary rocks, conveyed up to the earth's surface by ascending alkali basalt magma. Fibrolite formation around some of the prismatic sillimanits and Al-rich spinels (Mg#=0.4-0.5) formation in the contact of xenolith and host basalt indicate that pressure-temperature decreased during magma ascending and reaction of basaltic magma with xenolith.
Full-Text [PDF 4799 kb]   (142 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Le Maitre R.W., Streckeisen A., Zanettin B., Le Bas M.J., Bonin B., Bateman P., "Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International :union: of Geological Sciences", Cambridge Univ. Press, Cambridge )2005).
2. [2] Hagos M., Koeberl C., Kabeto K., Koller F., "Geochemical characteristics of the alkaline basalts and the phonolite -trachyte plugs of the Axum area, northern Ethiopia", Austrian Journal of Earth Sciences, 103/2 (2010) 153-170.
3. [3] Xu Y.G., Zhang H.H., Qiu H.N., Ge W.C., Wu F.Y., "Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?", Chemical Geology 328 (2012) 168-184. [DOI:10.1016/j.chemgeo.2012.01.027]
4. [4] Zeng G., Chen L.H., Xu X.S., Jiang S.Y., Hofmann A.W., "Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China", Chemical Geology 273 (2010) 35-45. [DOI:10.1016/j.chemgeo.2010.02.009]
5. [5] Spera F.J., "Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas", Contributions to Mineralogy and Petrology 88 (1984) 217-232. [DOI:10.1007/BF00380167]
6. [6] Pearson D.G., Canil D., Shirey S.B., "Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds", Earth Systems and Environmental Sciences 3 (2014) 169-253 [DOI:10.1016/B978-0-08-095975-7.00216-3]
7. [7] Dai H.K., Zheng J.P., "Mantle xenoliths and host basalts record the Paleo-Asian oceanic materials in the mantle wedge beneath northwest North China Craton", Solid Earth Sciences 4 (2019) 150-158 [DOI:10.1016/j.sesci.2019.09.001]
8. [8] Klügel A., Albers E., Hansteen T. H., "Mantle and Crustal Xenoliths in a Tephriphonolite From La Palma (Canary Islands): Implications for Phonolite Formation at Oceanic Island Volcanoes", Frontiers in Earth Science 10 (2022) 1-26 [DOI:10.3389/feart.2022.761902]
9. [9] Sims K.W.W., Maher K., Schrag D. P. "Isotopic Constraints on Earth System Processes", Advancing Earth and Space Science )2022). [DOI:10.1002/9781119595007]
10. [10] Espinoza F., Morata D., Pelleter E., Maury R.C., Suárezc M., Lagabrielle Y., Polvéea M., Bellon H., Cotton J., De la Cruz R., Guivel C., "Petrogenesis of the Eocene and Mio-Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows", Lithos, 82 (2005) 315-343. [DOI:10.1016/j.lithos.2004.09.024]
11. [11] Saadat S., Stern C.R., "Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran", Journal of Volcanology and Geothermal Research 225 (2012) 13-29. [DOI:10.1016/j.jvolgeores.2012.02.014]
12. [12] Salehi N., Torkian A., Furman T., "Olivine-hosted melt inclusions in Pliocene-Quaternary lavas from the Qorveh-Bijar volcanic belt, western Iran: implications for source lithology and cooling history", International Geology Review 62 (2019) 1828-1844. [DOI:10.1080/00206814.2018.1564890]
13. [13] Omrani H., Moayyed M., Jahangiri A., Moazzen M., "Introducing the Ghorveh fibrolites and their formation Condition", Petrological Journal (2010) 1-10.
14. [14] Raeis D., Dargahi S., Moeinzadeh S.H., Arvin M., Bahrambeigi B., "Geochemistry and Petrogenesis of Gandom-Berian Quaternary Alkali Basalts, North of Shahdad, Kerman Province (in Persian)", Geosciences (2013) 23-89.
15. [15] Khezerlou A, Amel N, moayed M, Jahangiri A, Gari Govayer M., "Petrography, mineral chemistry and geochemistry of hornblenditic autholiths and hornblenditic xenoliths from volcanic alkaline rocks from North West of Marand (NW Iran) (in Persian)", Iranian Journal of Crystallography and Mineralogy 25 ( 2018) 681-696. [DOI:10.29252/ijcm.25.4.681]
16. [16] Rajabi S., Torabi G., "Mineralogy and Geochemistry of xenoliths in the Eocene volcanic rocks of southwest of Jandaq (in Persian)", Journal of Economic Geology 1 (2013) 65-82.
17. [17] Rajabi S., "Petrology of Early Oligocene alkaline basalts in Toveireh area (SW of Jandaq, Isfahan Province). Ph.D Thesis, University of Isfahan (in Persian)", (2015).
18. [18] Rajabi S., Torabi G., Arai S., "Oligocene crustal xenolith-bearing alkaline basalt from Jandaq area (Central Iran): implications for magma genesis and crustal nature", Island arc 23 (2014) 125-141. [DOI:10.1111/iar.12063]
19. [19] Salim H., Torabi G., Shirdashtzadeh N., Sahlabadi M., Morishita T., "Early Oligocene continental alkalibasalts of the Central Toveireh area (Southwest of Jandaq, Isfahan Province, Iran)", Geotectonics (2022), DOI: 10.1134/S001685212202011X [DOI:10.1134/S001685212202011X]
20. [20] Torabi G., "Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): An evidence of CEIM confining oceanic crust subduction", Island Arc 19 (2010) 277-291. [DOI:10.1111/j.1440-1738.2009.00705.x]
21. [21] Sargazi M., Torabi G., Morishita T., "Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of the Jandaq, Central Iran): Implications for Eastern branch of Neo-Tethys subduction", Turkish Journal of Earth Sciences 28 (2019) 558-588. [DOI:10.3906/yer-1807-45]
22. [22] Romanko E., Kokorin Yu., Krivyakin B., Susov M., Morozov L., Sharkovski M., "Outline of metallogeny of Anarak area (Central Iran)", Geological Survey of Iran, Technoexport Report 19 (1984) 136 p.
23. [23] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95(1) (2010) 185-187. [DOI:10.2138/am.2010.3371]
24. [24] Aydin N.F., Karsli O., Sadiklar M.B., "Compositional variations, zoning types and petrogenetic implications of low-pressure clinopyroxenes in the Neogene alkaline volcanic rocks of northeastern Turkey", Turkish Journal of Earth Sciences 18 (2009) 163-186. [DOI:10.3906/yer-0802-2]
25. [25] Dobosi G., Jenner G.A., "Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, North Hungary: a study by laser ablation microprobe inductively coupled plasma-mass spectrometry", Lithos 46 (1999) 731-749. [DOI:10.1016/S0024-4937(98)00093-0]
26. [26] Vernon R.H., "Growth and concentration of fibrous sillimanite related to heterogeneous deformation in K-feldspar-sillimanite metapelite", Journal of Metamorphic Geology 5 (1987) 51-68. [DOI:10.1111/j.1525-1314.1987.tb00369.x]
27. [27] Delor C.P., Rock N.M.S., "Alkaline-ultramafic lamprophyre dikes from the Vestfold Hills, Princess Elizabeth Land (east Antarctica): Primitive magmas of deep mantle origin", Antarctic Science 3 (1991) 419-32. [DOI:10.1017/S0954102091000512]
28. [28] Bucher K., Grapes R., "Petrogenesis of metamorphic rocks", Springer, Berlin (2011) 441 p. [DOI:10.1007/978-3-540-74169-5]
29. [29] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock - forming minerals", 2 Rev Ed. Pearson Education Limited, United Kingdom (1992) 712 p.
30. [30] Morimoto N., "Nomenclature of pyroxenes", The Canadian Mineralogist 27 (1989) 143-156.
31. [31] Kerrick D.M., "The Al2O3 polymorphs", Reviews in Mineralogy Mineralogical society of America 22 (1990) 207-220 311-352.
32. [32] Pattison D.R.M., "Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish Aureole, Scotland", Journal of Geology 100 (1992) 423-446. [DOI:10.1086/629596]
33. [33] Kerrick D.M., Speer J.A., "The role of minor element solid solution on the andalusite sillimanite equilibrium in meta pelites and per aluminous granitoids", American Journal of Science 228 (1988) 159- 192. [DOI:10.2475/ajs.288.2.152]
34. [34] Lee P.R., Jillian R., Banfield F., Derrill F., Kerrick M., "Tem investigation of Lewiston, Idaho, fibrolite: Microstructure and grain boundary energetic", American Mineralogist 84 (1999) 152-159. [DOI:10.2138/am-1999-1-217]
35. [35] Holdaway M.J., "Stability of andalusite and aluminum silicate phase diagram", American Journal of Science 271 (1971) 97-131. [DOI:10.2475/ajs.271.2.97]
36. [36] Grambling, J.A., Williams M.L., "The effects of Fe3+ and Mn3+ on aluminum silicate phase relations in North-Central New Mexico", U.S.A. Journal of Petrology 26 (1985) 324-324. [DOI:10.1093/petrology/26.2.324]
37. [37] Richardson S.W., Gilbert M.C., BelI P.M., "Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point", American Journal of Science 267 (1969) 259-272. [DOI:10.2475/ajs.267.3.259]
38. [38] Loomise T.P., "Coexisting aluminum silicate phases in contact metamorphic aureole", American Journal of science 272 (1972b) 933-945. [DOI:10.2475/ajs.272.10.933]
39. [39] Foster C.T., "The role of biotite as a catalyst in reaction mechanism that forms fibrolite", Geological and Mineralogical Association of Canada, Abstracts 15, A40 (1978).
40. [40] Kretz R., "Symbols for rock forming minerals", American mineralogist 68 (1983) 227-279.
41. [41] Hemingway B.S., Robie R.A., Howard T.E., Kerrick D.M., "Heat capacity and entropies of sillimanite, fibrolite, andalusite and quartz and the Al2SiO5 phase diagram", American Mineralogist 76(9-10) (1991) 1597-1613.
42. [42] Homam S.M., Boyle A., Atherton M.P., "Syn- to post- kinematic fibrolite-biotite intergrowth in the Ardara aureole, NW Ireland", Journal of Science Islamic Republic of Iran 13(4) (2002) 327-337.
43. [43] Sassi R., Mazzoli C., Spiess R., Cester T., "Towards a better understanding of the fibrolite problem: the effect of reaction overstepping and surface energy anisotropy", Journal of Petrology 45(7) (2004) 1467-1479. [DOI:10.1093/petrology/egh022]
44. [44] Vernon R.H., "Growth and concentration of fibrous sillimanite related to heterogeneous deformation in K-feldspar-sillimanite metapelite", Journal of Metamorphic Geology 5 (1987) 51-68. [DOI:10.1111/j.1525-1314.1987.tb00369.x]
45. [45] Markl G., "Mullite-corundum-spinel-cordierite-plagioclase xenoliths in the Skaergaard Marginal Border Group: multi-stage interaction between metasediments and basaltic magma", Contributions to Mineralogy and Petrology 149 (2005) 196-215. [DOI:10.1007/s00410-004-0644-5]
46. [46] Moore J.G., "Geology of the Mount Pinchot quadrangle, southern Sierra Nevada, California", Geological Survey Bulletin 1130 (1963) 152 p.
47. [47] Johnson T.E., "White R.W., Brown M., A year in the life of an aluminous metapelite xenolith-The role of heating rates, reaction overstep, H2O retention and melt loss", Lithos 124 (2011) 132-143 [DOI:10.1016/j.lithos.2010.08.009]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb