Volume 31, Issue 1 (4-2023)                   www.ijcm.ir 2023, 31(1): 195-206 | Back to browse issues page


XML Persian Abstract Print


1- Damghan University
Abstract:   (584 Views)
Microstructural, optical, and photocatalytic properties of (x = 0, 0.05, 0.10, 0.15) LaMn1-xZnxO3 nanoparticles have been investigated by X-ray diffraction, Raman and Fourier transform infrared spectroscopy, field emission scanning electron microscope, Energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. Our study indicates that there is a structural phase transition from the rhombohedral (space group R3c) to the orthorhombic (space group Pbnm I) structure. Lanthanum manganese (LM) is one of the most promising and efficient photocatalysts for the degradation of organic pollutants. To determine the photocatalytic performance of LaMn1-xZnxO3 nanoparticles, the effects of three operational parameters including irradiation time, pH, and the catalyst amount on the degradation of aqueous solution of methyl orange (MO) and methyl blue (MB) were investigated. The results showed that LaMn0.9Zn0.1O3 has higher photocatalytic activity than the LM for degradation of MO and MB under sunlight. A possible mechanism for better photocatalytic performance of the samples was discussed. The LaMn0.9Zn0.1O3 did not exhibit any significant loss after six cycles of the degradation of MO and MB under the same conditions.
Full-Text [PDF 1799 kb]   (182 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] J. B.Goodenough, I. Kazeminezhad, "Colssal Magnetorestance in La1-xAxMnO3 Perovskites." Aust. J. Phys, (1999). [DOI:10.1071/P98070]
2. [2] A. Gholizadeh, "The effects of A/B-site substitution on structural, redox and catalytic properties of lanthanum ferrite nanoparticles." Journal of Materials Research and Technology 8 (2019) 457-466. [DOI:10.1016/j.jmrt.2017.12.006]
3. [3] Mo, H., Nan, H., Lang, X., Liu, S., Qiao, L., Hu, X., & Tian, H. "Influence of calcium doping on performance of LaMnO3 supercapacitors." Ceramics International, 44 (2018) 9733-9741.‏ [DOI:10.1016/j.ceramint.2018.02.205]
4. [4] Supelano, G. I., Barón-González, A. J., Santos, A. S., Ortíz, C., Gómez, J. A. M., & Vargas, C. A. P. "Effect of Mg addition on LaMnO3 ceramic system." Journal of materials research and technology 7 (2018) 77-81.‏ [DOI:10.1016/j.jmrt.2017.05.012]
5. [5] Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P., & Stevenson, K. J. "Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes." Nature materials, 13(2014) 726. [DOI:10.1038/nmat4000]
6. [6] T. Raoofi, M.H. Ehsani, D. Sanavi khoshnood, "Investigation of particle size effect on structural and magnetic properties of La0.6Sr0.4MnO3 manganite", Iranian Journal of Crystallography and Mineralogy 24 (2017) 691-702.
7. [7] Ahmad Gholizadeh, "Structural and magnetic investigations of LaMn1-xCoxO3 (x = 0.00, 0.25, 0.50, 0.75, 1.00) perovskite nano-particles", Iranian Journal of Crystallography and Mineralogy 22 (2015) 599-606.
8. [8] Sh. Abarashi, N. Tajabor, M. Rezaei, M. Behdani, "Synthesis of La0.7Ca0.3-x SrxMnO3 nano-crystallites by mechanical activation and study their microstructure and magnetotransport properties", Iranian Journal of Crystallography and Mineralogy 18 (2010) 301-312.
9. [9] M. R. Alinejad, N. Tajabor, S. Masoomi, "Effect of substitution of cobalt on crystal structure and magnetoresistance of La0.75Sr0.2Mn1-xCoxO3 compositions prepared by sol-gel technique", Iranian Journal of Crystallography and Mineralogy 14 (2006) 413-430.
10. [10] Tian, H., Lang, X., Nan, H., An, P., Zhang, W., Hu, X., & Zhang, J. "Nanosheet-assembled LaMnO3@ NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors." Electrochimica Acta. (2019) 318 (2019) 651-659. [DOI:10.1016/j.electacta.2019.06.133]
11. [11] Shafi, P. M., Ganesh, V., & Bose, A. C. "LaMnO3/RGO/PANI Ternary Nanocomposites for Supercapacitor Electrode Application and Their Outstanding Performance in All-Solid-State Asymmetrical Device Design." ACS Applied Energy Materials, 1 (2018) 2802-2812.‏ [DOI:10.1021/acsaem.8b00459]
12. [12] Huang, H., Liu, Q., Lu, B., Wang, X., & Hu, J. "LaMnO3-diamond composites as efficient oxygen reduction reaction catalyst for Zn-air battery." Diamond and Related Materials 91 (2019) 199-206.‏ [DOI:10.1016/j.diamond.2018.11.024]
13. [13] I. Alvarez-Serrano, C. Pico, and M. L. Veiga. "Structural characterization, electric and magnetic behaviour of Zn-doped manganites" Solid state sciences 6 (2004) 1321-1326. [DOI:10.1016/j.solidstatesciences.2004.07.022]
14. [14] S. Hu, L., Tong, W., Zhu, H., & Zhang, Y. "The effects of Jahn-Teller distortion changes on transport properties in LaMn1−xZnxO3." Journal of Physics: Condensed Matter, 15 (2003) 2033. [DOI:10.1088/0953-8984/15/12/320]
15. [15] E. A. S. Patra, G. Gogoi, R. K. Sahu, and M. Qureshi. "Modulating the electronic structure of lanthanum manganite by ruthenium doping for enhanced photocatalytic water oxidation." Physical Chemistry Chemical Physics 19, no. 19 (2017): 12167-12174 [DOI:10.1039/C7CP01444A]
16. [16] A. Arabi, M. Fazli, and M. H. Ehsani. "Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation." Bulletin of Materials Science 41, no. 3 (2018): 77. [DOI:10.1007/s12034-018-1590-6]
17. [17] Esmaili L., Gholizadeh A., "Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite", Iranian Journal of Crystallography and Mineralogy 26 (2019)1013-1026. [DOI:10.29252/ijcm.26.4.1013]
18. [18] A. Gholizadeh, and M. Beyranvand, "Structural, magnetic, elastic, and dielectric properties of Mg0.3−xBaxCu0.2Zn0.5Fe2O4 nanoparticles", Physica B: Physics of Condensed Matter, 584 (2020) 412079. [DOI:10.1016/j.physb.2020.412079]
19. [19] Gholizadeh A., Tajabor N., "Influence of N2- and Ar-ambient annealing on the physical properties of SnO2:Co transparent conducting films", Materials Science in Semiconductor Processing 13 (2010) 162. [DOI:10.1016/j.mssp.2010.10.004]
20. [20] Gong, F., Tong, W., Tan, S., & Zhang, Y. "Large effect of small Zn doping on the electric and magnetic properties in LaMn1−xZnxO3". Physical Review B, 68 (2003) 174410. [DOI:10.1103/PhysRevB.68.174410]
21. [21] R.D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallogr. A 32 (1976) 751-767 [DOI:10.1107/S0567739476001551]
22. [22] M. Dokiya, O. Yamamoto, H. Tagawa, S.C. Singhal, "Proceedings of the fourth international symposium on SOLID OXIDE FUEL CELLS (SOFC-IV)", THE ELECTROCHEMICAL SOCIETY,INC., (1995).
23. [23] Dodiya, N., & Varshney, D. "Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3 (0.075≤x≤0.15). Journal of Molecular Structure 1031 (2013) 104-109. [DOI:10.1016/j.molstruc.2012.07.037]
24. [24] Martín-Carrón, L., De Andres, A., Martínez-Lope, M. J., Casais, M. T., & Alonso, J. A. "Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites". Physical Review B, 66 (2002) 174303. [DOI:10.1103/PhysRevB.66.174303]
25. [25] Gnezdilov, V. P., Yeremenko, A. V., Pashkevich, Y. G., Lemmens, P., Güntherodt, G., Shiryaev, S. V, & Barilo, S. N. Phonon Raman scattering in LaMn1−xCoxO3 (x= 0, 0.2, 0.3, 0.4, and 1.0). Low Temperature Physics, 29 (2003) 963-966. [DOI:10.1063/1.1614244]
26. [26] Gao, F., Chen, J., Farhoudi, M. M., Wang, X. L., & Dou, S. X. "Structures, and far-infrared and Raman spectra of GdMn1−xCoxO3 (x=0-1.0)." Thin Solid Films 518 (2003) e24-e27. [DOI:10.1016/j.tsf.2010.03.119]
27. [27] De Marzi, G., Popović, Z. V., Cantarero, A., Dohčević-Mitrović, Z., Paunović, N., Bok, J., & Sapiña, F. "Effect of A-site and B-site substitution on the infrared reflectivity spectra of La1−yAy Mn1−xBxO3 (A= Ba, Sr; B= Cu, Zn, Sc; 0 < y ≤ 0.3; 0 ≤x ≤ 0.1) manganites." Physical Review B 68 (2003) 064302.
28. [28] Van Minh, N., Kim, S. J., & Yang, I. S. "Effect of Ni on structure and Raman scattering of LaMn1− xNixO3+ δ." Physica B: Condensed Matter, 327(2003) 208-210. [DOI:10.1016/S0921-4526(02)01729-5]
29. [29] A. Ahmad, H. Bae, and I. Rhee. "Silica-coated gadolinium-doped lanthanum strontium manganite nanoparticles for self-controlled hyperthermia applications." AIP Advances 8 (2018) 015108. [DOI:10.1063/1.5011717]
30. [30] S. Farhadi, F. Mahmoudi, M. M. Amini, M. Dusek, and M. Jarosova. "Synthesis and characterization of a series of novel perovskite-type LaMnO3/Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions." Dalton Transactions 46 (2017) 3252-3264. [DOI:10.1039/C6DT04866H]
31. [31] Z. Sihaib, F. Puleo, G. Pantaleo, V. La Parola, José Luis Valverde, Sonia Gil, Leonarda Francesca Liotta, and Anne Giroir-Fendler. "The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation." Catalysts 9 (2019) 226. [DOI:10.3390/catal9030226]
32. [32] N. Shamgani, A. Gholizadeh, "Structural, magnetic and elastic properties of Mn0.3-xMgxCu0.2Zn0.5Fe3O4 nanoparticles", Ceramics International 45 (2019) 239-246. [DOI:10.1016/j.ceramint.2018.09.158]
33. [33] Thakur, P., Thakur, A., & Yadav, K. "Study of variation in the band gap with concentration of TiO2In (LaMnO3)1-x/ (TiO2x (where x= 0.0, 0.1, 0.2, 0.3 and 0.4) nanocomposites." AIP Publishing LLC. 1728 (2016) 020414. [DOI:10.1063/1.4946465]
34. [34] T.‏ Hamada, N., Sawada, H., & Terakura, K. "Electronic Band Structures of LaMO3 (M= Ti, V, Cr, Ni, Cu) in the Local Spin-Density Approximation In Spectroscopy of Mott Insulators and Correlated Metals." Springer, Berlin, Heidelberg 119 (1995) 95-105. [DOI:10.1007/978-3-642-57834-2_8]
35. [35] Arima, T. H., & Tokura, Y. "Optical study of electronic structure in perovskite-type RMO3 (R= La, Y; M= Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)." Journal of the Physical Society of Japan, 64 (1995) 2488-2501. [DOI:10.1143/JPSJ.64.2488]
36. [36] M. Satpathy, S., Popović, Z. S., & Vukajlović, F. R. "Density‐functional studies of the electronic structure of the perovskite oxides: La1−xCaxMnO3", Journal of applied physics, 79 (1996) 4555-4557. [DOI:10.1063/1.361546]
37. [37] Kumar, S. R., Abinaya, C. V., Amirthapandian, S., & Ponpandian, N. "Enhanced visible light photocatalytic activity of porous LaMnO3 sub-micron particles in the degradation of rose bengal." Materials Research Bulletin 93 (2017) 270-281. [DOI:10.1016/j.materresbull.2017.05.024]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.