دوره 30، شماره 2 - ( 3-1401 )                   جلد 30 شماره 2 صفحات 222-207 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه بین المللی امام خمینی (ره)
چکیده:   (816 مشاهده)
کانسار روی- سرب انگوران در 135 کیلومتری غرب شهر زنجان و در شمالغربی پهنه ساختاری سنندج- سیرجان واقع است. نتایج این پژوهش نشان‌دهنده رخداد دگرسانی دولومیتی در فرادیواره کربنات و تشکیل آنکریت در فرودیواره شیست است. میزبان اصلی کانه‌زایی سنگ کربناتی دگرگون‌شده است. دولومیت انگوران از نوع ثانویه و گرمابی است. تشکیل دولومیت ثانویه و ایجاد تخلخل فضای لازم برای جای‌گیری کانه‌های سولفیدی اسفالریت، گالن و پیریت را در سنگ میزبان کربناتی فراهم کرده است. نتایج نشان می‌دهد که اسفالریت انگوران غنی از آهن، کادمیوم و ژرمانیم بوده و گالن غنی از آنتیموان و نقره است. دمای تشکیل اسفالریت انگوران 170-190 درجه سانتیگراد بوده است. از مقایسه این ویژگی‌ها با سایر کانسارهای سرب و روی مشخص شد که کانسار انگوران بیشترین شباهت را به کانسارهای نوع دره می‌سی‌سی‌پی (MVT) داشته و شیمی کانی‌ها و دمای تشکیل آنها تفاوت اساسی با سایر انواع کانه‌زایی دارد.     
متن کامل [PDF 5093 kb]   (256 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Gilg H.A., Boni M., Balassone G., Allen C.R., Banks D., Moore F., "Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex", Mineralium Deposita 41 (2006) 1-16. [DOI:10.1007/s00126-005-0035-5]
2. [2] Zhuang L., Song Y., Liu Y., Fard M., Hou Z., "Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn-Pb deposit, Iran: Implications for mineralization conditions and type", Ore Geology Reviews 109 (2019) 184-200. [DOI:10.1016/j.oregeorev.2019.04.009]
3. [3] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran", Mineralium Deposita 42 (2007) 799-820. [DOI:10.1007/s00126-007-0144-4]
4. [4] Gilg H.A., Allen C., Balassone, G., Boni, M., Moore, F., "The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran", Mineral Exploration and Sustainable Development. Millpress, Rotterdam (2003) 77-80.
5. [5] Maanijou M., "Proterozoic metallogeny of Iran", in: International Symposium on the Metallogeny of Precambrian Shields, Kiev, 2002: pp. 13-26.
6. [6] Annels A.E., O'Donovan G., Bowles M., "New ideas concerning the genesis of the Angouran Zn-Pb deposit, NW Iran", 26th Mineral Deposits Studies Group, University of Leicester, Leicester (2003) 11-12.
7. [7] Ebrahimi M.H., Aftabi A., Mohamadi Niaei R., "Structural, textural, mineralogical and geochemical features and the pattern of the Angoran ore deposit in the Sedex-VMS-MVT triangle", Iranian Journal of Petrology 1 (2010) 1-10.
8. [8] Daliran F., Pride K., Walther J., Berner Z.A., Bakker R.J., "The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization", Ore Geology Reviews 53 (2013) 373-402. [DOI:10.1016/j.oregeorev.2013.02.002]
9. [9] Guilbert J.M., Park C.F., "The geology of ore deposits", Waveland Press, 2007.
10. [10] Babakhani A.R., Ghalamghash J., "Geological map of Takht-e-Soleiman., scale 1: 100,000.", (1990).
11. [11] Shahbazi H., Siebel W., Ghorbani M., Pourmoafee M., Sepahi A.A., Abedini M.V., Shang C.K., "The Almogholagh pluton, Sanandaj-Sirjan zone, Iran: geochemistry, U-(Th)-Pb titanite geochronology and implications for its tectonic evolution, Neues Jahrbuch Für Mineralogie-Abhandlungen". Journal of Mineralogy and Geochemistry 192 (2015) 85-99. [DOI:10.1127/njma/2014/0273]
12. [12] Ghorbani M., Economic geology of Iran, Springer, 2013. [DOI:10.1007/978-94-007-5625-0]
13. [13] Sharafi A., Ardejani F.D., Rezaei B., Sargheini, J., "Environmental geochemistry of near-neutral waters and mineralogy of zinc and lead at the Angouran non-sulphide zinc mine, NW Iran", Journal of Geochemical Exploration 186 (2018) 77-93. [DOI:10.1016/j.gexplo.2017.11.020]
14. [14] Rahimi H., "Geological Map of Angouran Mine, scale 1: 2000", (2016).
15. [15] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
16. [16] Deer W.A., "Rock-forming minerals: Non-silicates, volume 5B", in: Geological Society of London, 1998.
17. [17] Fleischer, M., Wilcox, R. E., Matzko, J. J., "Microscopic determination of the nonopaque minerals", US Government Printing Office, 1984.
18. [18] Ferrill D.A., Morris A.P., Evans M.A., Burkhard M., Groshong Jr, R. H., Onasch, C. M., "Calcite twin morphology: a low-temperature deformation geothermometer", Journal of Structural Geology 26 (2004) 1521-1529. [DOI:10.1016/j.jsg.2003.11.028]
19. [19] Burkhard M., "Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review", Journal of Structural Geology 15 (1993) 351-368. [DOI:10.1016/0191-8141(93)90132-T]
20. [20] Gholizadeh K., Rasa I., Yazdi M., Boni M., "Mineralogy and geochemistry of Zincian-dolomite in Bahramtaj deposit, Yazd, Central Iran", Iranian J Crystallography Mineral 27 (2019) 925-940. [DOI:10.29252/ijcm.27.4.925]
21. [21] Viets J.G., Hopkins R.T., Miller B.M., "Variations in minor and trace metals in sphalerite from mississippi valley-type deposits of the Ozark region; genetic implications", Economic Geology 87 (1992) 1897-1905. [DOI:10.2113/gsecongeo.87.7.1897]
22. [22] Monteiro L.V.S., Bettencourt J.S., Juliani C., de Oliveira T.F., "Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil", Ore Geology Reviews 28 (2006) 201-234. [DOI:10.1016/j.oregeorev.2005.03.005]
23. [23] Mladenova V., Valchev S., "Ga/Ge ratio in sphalerite from the carbonate-hosted Sedmochislenitsi Deposit as a temperature indication of initial fluids", Review of the Bulgarian Geological Society 59 (1998) 49-54.
24. [24] Möller P., "Correlation of homogenization temperatures of accessory minerals from sphalerite-bearing deposits and Ga/Ge model temperatures", Chemical Geology 61 (1987) 153-159. [DOI:10.1016/0009-2541(87)90035-0]
25. [25] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos. 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
26. [26] Hajalilou B., Aghazadeh, M., "Fluid Inclusion Studies on Quartz Veinlets at the Ali Javad Porphyry Copper (Gold) Deposit, Arasbaran, Northwestern Iran", Journal of Geoscience and Environment Protection 4 (2016) 80-91. [DOI:10.4236/gep.2016.46007]
27. [27] Saboori M., Karimpour M.H., Malekzadeh Shafaroudi A., "Mineralogy, ore chemistry, and fluid inclusion studies in Gushfil Pb-Zn deposit, Irankuh mining district, SW Isfahan", Iranian Journal of Crystallography and Mineralogy 26 (2019) 857-870. https://doi.org/10.29252/ijcm.26.4.857 [DOI:10.29252/ijcm.26.4.857.]
28. [28] Adabi M.H., "Sedimentary Geochemistry", Arianzamin, Tehran, 2012.
29. [29] Kaczmarek S.E., Sibley D.F., "On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites", Sedimentary Geology 240 (2011) 30-40. [DOI:10.1016/j.sedgeo.2011.07.003]
30. [30] Folk R.L., Land L.S., "Mg/Ca ratio and salinity: two controls over crystallization of dolomite", AAPG Bulletin 59 (1975) 60-68. [DOI:10.1306/83D91C0E-16C7-11D7-8645000102C1865D]
31. [31] Budd D.A., "Cenozoic dolomites of carbonate islands: their attributes and origin", Earth-Science Reviews 42 (1997) 1-47. [DOI:10.1016/S0012-8252(96)00051-7]
32. [32] Kırmacı M.Z., Akdağ K., "Origin of dolomite in the Late Cretaceous-Paleocene limestone turbidites, eastern Pontides, Turkey", Sedimentary Geology 181 (2005) 39-57. [DOI:10.1016/j.sedgeo.2005.07.003]
33. [33] Hood S.D., Nelson C.S., Kamp P.J., "Burial dolomitisation in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand", Sedimentary Geology 172 (2004) 117-138. [DOI:10.1016/j.sedgeo.2004.08.005]
34. [34] Rahimi A., Adabi M.H., Aghanabati A., Majidifard M.R., Jamali A.M., "Dolomitization mechanism based on petrography and geochemistry in the Shotori Formation (Middle Triassic), Central Iran", Open Journal of Geology 6 (2016) 1149-1168. [DOI:10.4236/ojg.2016.69085]
35. [35] Barnaby R.J., Read J.F., "Dolomitization of a carbonate platform during late burial; Lower to Middle Cambrian Shady Dolomite, Virginia Appalachians", Journal of Sedimentary Research 62 (1992) 1023-1043. [DOI:10.1306/D4267A3C-2B26-11D7-8648000102C1865D]
36. [36] Zhang S., Lv, Z., Wen, Y., Liu, S., "Origins and geochemistry of dolomites and their dissolution in the middle Triassic Leikoupo formation, western Sichuan Basin, China", Minerals 8 (2018) 289. [DOI:10.3390/min8070289]
37. [37] Warren J., "Dolomite: occurrence, evolution and economically important associations", Earth-Science Reviews. 52 (2000) 1-81. [DOI:10.1016/S0012-8252(00)00022-2]
38. [38] Wen H., Wen L., Chen H., Zheng R., Dang L., Li Y., "Geochemical characteristics and diagenetic fluids of dolomite reservoirs in the Huanglong Formation, Eastern Sichuan Basin, China", Petroleum Science 11 (2014) 52-66. [DOI:10.1007/s12182-014-0317-6]
39. [39] Zamani F., Moussavi-Harami S.R., Zand-Moghadam H., Mahboubi A., "Petrography and geochemistry of carbonate hosted-rock in the Karavangah and Dehno Pb-Zn mines at the north of Kuhbanan, Kerman", Iranian Journal of Crystallography and Mineralogy 28 (2020) 507-526. https://doi.org/10.29252/ijcm.28.2.507 [DOI:10.29252/ijcm.28.2.507.]
40. [40] Bazargani-Guilani K., Mehrabi B., Rabiee M., "Effects of carbonate host rock on Pb-Zn mineralization in NW of Shahmirzad, Central Alborz, Iran", Iranian Journal of Crystallography and Mineralogy 18 (2010) 53-66.
41. [41] Karimpour M.H., Malekzadeh Shafaroudi A., Esmaeili, S.A., Shabani S., "Mineralogy and geochemical varations of altered host rock in Irankuh Pb-Zn mining district, SW Isfahan", Journal of Advanced Applied Geology 8 (2019) 1-16.
42. [42] Ghasemi M., Mohammadzadeh M., Yaghubpur A., Mirshokraei A.A., "Mineralogy and Textural Studies of Mehdiabad Zinc-Lead Deposit- Yazd, Central Iran", Iranian Journal of Crystallography and Mineralogy 16 (2008) 389-404.
43. [43] Maghfouri S., Hosseinzadeh M.R., Rajabi A., Azimzadeh A.M., "Darreh-Zanjir deposit; a typical carbonate hosted Zn-Pb deposit (MVT) in Early Cretaceous sedimentary sequence, Southern Yazd basin", Geosciences 26 (2017) 13-28.
44. [44] Wu T., Huang Z., He Y., Yang M., Fan H., Wei C., Ye L., Hu Y., Xiang Z., Lai C., "Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: Evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes", Ore Geology Reviews (2021) 104214. [DOI:10.1016/j.oregeorev.2021.104214]
45. [45] Wei C., Ye L., Hu Y., Huang Z., Danyushevsky L., Wang H., "LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: A case study of the Maoping deposit", Ore Geology Reviews 130 (2021) 103945. [DOI:10.1016/j.oregeorev.2020.103945]
46. https://doi.org/10.1016/j.oregeorev.2020.103945 [DOI:10.1016/j.oregeorev.2020.103945.]
47. [46] Hu Y., Wei C., Ye L., Huang Z., Danyushevsky L., Wang, H., "LA-ICP-MS sphalerite and galena trace element chemistry and mineralization-style fingerprinting for carbonate-hosted Pb-Zn deposits: Perspective from early Devonian Huodehong deposit in Yunnan, South China", Ore Geology Reviews 136 (2021) 104253. https://doi.org/10.1016/j.oregeorev.2021.104253 [DOI:10.1016/j.oregeorev 2021.104253.]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.