دوره 29، شماره 4 - ( 10-1400 )                   جلد 29 شماره 4 صفحات 932-919 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه صنعتی شاهرود
2- دانشگاه تربیت مدرس
چکیده:   (1085 مشاهده)
لایه­های نازک پروسکایتی  CH3NH3SnICl2 (MASnICl2)  و  CH(NH2)2SnICl2 (FASnICl2)  به روش پوشش­دهی­چرخشی­تک مرحله­ای بر زیر لایه­های شیشه­ای نهشته شدند و ویژگی­های ساختاری ، نوری و الکتریکی آنها بررسی گردید. مشخصه یابی ساختاری این لایه­ها نشان داد که همه آنها دارای ساختار چارگوشی پروسکایت (فاز هستند و با تغییر کاتیون­های آلی CH(NH2)2I ((FAI وCH3NH3I  (MAI)کیفیت بلورینگی و ریخت سطح نمونه­ها به طور محسوسی تغییر می­کنند. اثر این تغییرات بر ویژگی­های الکتریکی و نوری لایه­ها نیز دیده شد. لایه­های پروسکایتی تهیه شده دارای ضریب جذب بالایی (از مرتبه cm-1105) در ناحیه مرئی بودند. گاف انرژی لایه­ها محاسبه شده براساس رابطه تائوک برای لایه FASnICl2 برابر با eV 48/1 و برای لایه  MASnICl2 برابر باeV  54/1 است. در طیف نورتابی (PL) هر دو لایه پروسکایتی در دمای اتاق یک قله به نسبت شدید نزدیک گاف انرژی لایه­ها دیده شد که شدت آن در لایه FASnICl2 به طور قابل توجهی بیشتر از لایه MASnICl2 بود. نتایج نشان داد که لایه پروسکایتی FASnICl2 سنتز شده دارای ساختار بلورین بهتر، مقاومت الکتریکی کمتر، حساسیت و پاسخ نوری مناسب­تر در مقایسه با لایه MASnICl2 است و می­تواند گزینه­ مناسبی برای استفاده به عنوان لایه جاذب در سلول­های خورشیدی باشد.      
متن کامل [PDF 1365 kb]   (343 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Carmichael I.S.E., "The redox states of basic and silicic magmas: a reflection of their source regions?" Contrib. Mineral. Petrology 106 (1991), 129-141. [DOI:10.1007/BF00306429]
2. [2] Frost B. R., "Introduction to oxygen fugacity and its petrologic importance. In D. H. Lindsley (Ed.), Oxide Minerals: Petrologic and Magnetic Significance". Reviews in Mineralogy 25 (1991), pp. 1-9. Washington, DC: Mineral. Soc. Am. [DOI:10.1515/9781501508684-004]
3. [3] Brounce M. N., Kelley K. A., Cottrell E., "Variations in Fe 3+/∑Fe of Mariana Arc basalts and mantle wedge fO2". Journal of Petrology 55 (2014), 2513-2536. [DOI:10.1093/petrology/egu065]
4. [4] Canil D., "Vanadium in peridotites, mantle redox and tectonic environments: Archean to present". Earth and Planetary Science Letters, 195 (2002), 75-90. https://doi.org/10.1016/S0012-821X(01)00582-9 [DOI:10.1016/S0012‐821X(01)00582‐9]
5. [5] Evans K. A., Tomkins A. G., "The relationship between subduction zone redox budget and arc magma fertility". Earth and Planetary Science Letters, 308 (2011), 401-409. [DOI:10.1016/j.epsl.2011.06.009]
6. [6] Jugo P.J., "Sulfur content at sulfide saturation in oxidized magmas, Geology 37 (2009), p. 415-418. Doi: [DOI:10.1130/G25527A.1]
7. [7] Richards J. P., "The oxidation state, and sulfur and Cu contents of arc magmas:implications for metallogeny". Lithos 233 (2015),27-45. [DOI:10.1016/j.lithos.2014.12.011]
8. [8] Sillitoe R. H., "Porphyry copper systems", Economic Geology 105 (2010), p. 3-41. DOI:10.2113/gsecongeo.105.1.3 [DOI:10.2113/gsecongeo.105.1.3]
9. [9] Burgisser A., Scaillet B., "Redox evolution of a degassing magma rising to the surface". Nature, 445 (2007), 194. [DOI:10.1038/nature05509]
10. [10] Moretti R., Ottonello G., "Solubility and speciation of sulfur in silicate melts: The Conjugated Toop‐Samis‐Flood‐Grjotheim (CTSFG) model". Geochimica et Cosmochimica Acta 69 (2005), 801-823. [DOI:10.1016/j.gca.2004.09.006]
11. [11] Ballard J.R., Palin J.M., Campbell I.H., "Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile", Contributions to Mineralogy and Petrology 144 (2002), p. 347-364.https://link.springer.com/article/10.1007/s00410-002-0402-5 [DOI:10.1007/s00410-002-0402-5]
12. [12] Smythe D. J., Brenan J. M., "Magmatic oxygen fugacity estimated using zircon‐melt partitioning of cerium". Earth and Planetary Science Letters 453 (2016), 260-266. [DOI:10.1016/j.epsl.2016.08.013]
13. [13] Trail D., Watson E. B., Tailby N. D., "The oxidation state of Hadean magmas and implications for early Earth's atmosphere". Nature, 480 (2011), 79-82. [DOI:10.1038/nature10655]
14. [14] Carley T.L., Miller C.F., Wooden J.L., Padilla A.J., Schmitt A.K., Economos R.C., Bindeman I.N., Jordan B.T., "Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record." Earth Planet. Sci. Lett. 405 (2014), 85-97. [DOI:10.1016/j.epsl.2014.08.015]
15. [15] Dilles J.H., Kent A.J.R., Wooden J.L., Tosdal R.M., Koleszar A., Lee R.G., Farmer L.P., "Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas." Econ. Geol. 110 (2015), 241-251. [DOI:10.2113/econgeo.110.1.241]
16. [16] Shen P., Hattori K., Jackson S., Seitmuratova E., "Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt", Economic Geology 110 (2015), p. 1861-1878. DOI: 10.2113/econgeo.110.7.1861 [DOI:10.2113/econgeo.110.7.1861]
17. [17] Cherniak D.J., Watson E.B., Hanchar J.M., "Rare-earth diffusion in zircon", Chemical Geology 134 (1997), p. 289-301. [DOI:10.1016/S0009-2541(96)00098-8]
18. [18] Liang H.Y., Campbell I.H., Allen C., Sun W.D., Liu C.Q., Yu H.X., Xie Y.W., Zhang Y.Q., "Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet", Mineral. Deposita 41 (2006), p. 152-159. Doi: 10.1007/s00126-005-0047-1 [DOI:10.1007/s00126-005-0047-1]
19. [19] Han Y.G., Zhang S.H., Pirajno F., Zhou X.W., Zhao G.C., Qu W.J., Liu S.H., Zhang J.M., Liang H.B., Yang K., "U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: insights into the oxidation state of granitoids and Mo (Au) mineralization", Ore Geol. Rev. 55 (2013), p. 29-47. Doi: 10.1016/j.oregeorev.2013.04.006 [DOI:10.1016/j.oregeorev.2013.04.006]
20. [20] Qiu J.T., Yu X.Q., Santosh M., Zhang D.H., Chen S.Q., Li P.J., "Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China", Mineralium Deposita 48 (2013), p. 545-556. Doi: 10.1007/s00126-013-0456-5 [DOI:10.1007/s00126-013-0456-5]
21. [21] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L., "Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology", Ore Geology Reviews 70 (2015), p. 385-406. doi:10.1016/j.oregeorev.2015.03.003. [DOI:10.1016/j.oregeorev.2015.03.003]
22. [22] McCall G.J.H., "The geotectonic history of the Makran and adjacent areas of southern Iran", J. SE Asian Earth Sci. 15 (1997), p. 517-531. [DOI:10.1016/S0743-9547(97)00032-9]
23. [23] Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.Y., Chu C.H., Lee H.Y., Lo C.H., "Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications", Lithos 180-181 (2013), p. 234-251. DOI:10.1016/j.lithos.2013.05.009 [DOI:10.1016/j.lithos.2013.05.009]
24. [24] Zarrinkoub M.H., Pang K.N., Chung S.L., Khatib M.M., Mohammadi S.S., Chiu H.Y., Lee H.Y., "Zircon U/Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran", Lithos 154 (2012) p. 392-405. DOI:10.1016/j.lithos.2012.08.007 [DOI:10.1016/j.lithos.2012.08.007]
25. [25] Karimpour M.H., Stern C.R., Farmer L., Saadat S., Malekzadeh Shafaroudi A., "Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran". Journal of Geopersia 1 (2011), p. 19-36. Doi: 10.22059/JGEOPE.2011.22162
26. [26] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107 (2012), p. 295-332. [DOI:10.2113/econgeo.107.2.295]
27. [27] Arjmandzadeh R., Karimpour M.H., Mazaheri S.A., Santos J.F., Medina J.M., Homam S.M., "Sr/Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran)", Journal of Asian Earth Sciences 41 (2011), p. 283-296. [DOI:10.1016/j.jseaes.2011.02.014]
28. [28] Arjmandzadeh R., Santos J.F., "Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu-Mo porphyry mineralizing intrusives from Lut Block, eastern Iran", International ournal of Earth Sciences 103 (2014), p. 123-140. doi: 10.1007/s00531-013-0959-4 [DOI:10.1007/s00531-013-0959-4]
29. [29] Malekzadeh Shafaroudi A., Karimpour M.H., Stern C.R., "The Khopik porphyry copper-gold prospect, Lut Block, Eastern Iran: geology, alteration, mineralization, fluid inclusion, and oxygen isotope studies", Ore geology Reviews 65 (2015), p. 522-544. DOI: 10.1016/j.oregeorev.2014.04.015 [DOI:10.1016/j.oregeorev.2014.04.015]
30. [30] Kluyver H.M., Griffts R.J., Tirrul R., Chance P.N., Meixner H.M., "Explanatory text of the Lakar Kuh quadrangle 1:250,000". Geol Surv Iran 19 (1978), p. 1-175
31. [31] Xie L.W., Zhang Y.B., Zhang H.H., Sun J.F., Wu F.Y., "In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite", Chinese Science Bulletin 53 (2008): p. 1565-1573.doi: 10.1007/s11434-012-5177-0 [DOI:10.1007/s11434-012-5177-0]
32. [32] Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y., "GLITTER: data reduction software for laser ablation ICP-MS". Laser Ablation-ICP-MS in the Earth Sciences (2008): Current Practices and Outstanding Issues, 308-311.
33. [33] Smythe D. J., Brenan J. M., "Cerium oxidation state in silicate melts: combined fO(2), temperature and compositional effects", Geochim. Cosmochim. Acta 170 (2015), p. 173-187. Doi: 10.1016/j.gca.2015.07.016 [DOI:10.1016/j.gca.2015.07.016]
34. [34] Blundy J., Wood B., "Prediction of crystal-melt partition coefficients from elastic moduli", Nature 372 (1994), p. 452-454. https://www.nature.com/articles/372452a0 [DOI:10.1038/372452a0]
35. [35] Shannon R. T., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32 (1976), p. 751-767. doi: 10.1107/S0567739476001551 [DOI:10.1107/S0567739476001551]
36. [36] Trail D., Watson E. B., Tailby N. D., "Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas", Geochimica et Cosmochimica Acta 97 (2012), p. 70-87. doi:10.1016/j.gca.2012.08.032 [DOI:10.1016/j.gca.2012.08.032]
37. [37] Ferry J. M., Watson E. B., "New thermodynamic models and revised calibrations for the ti-in-zircon and zr-in-rutile thermometers", Contributions to Mineralogy and Petrology 154 (2007), p. 429-437. Doi: 10.1007/s00410‐007‐0201‐0 [DOI:10.1007/s00410-007-0201-0]
38. [38] Lu Y. J., Loucks R. R., Fiorentini M. L., Yang Z. M., Hou Z. Q., "Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet", Geology 43 (2015), p. 583-586. Doi: 10.1130/G36734.1 [DOI:10.1130/G36734.1]
39. [39] Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W., "Ti-in-zircon thermometry: applications and limitations". Contrib. Mineral. Petrol. 156 (2008), 197-215. [DOI:10.1007/s00410-008-0281-5]
40. [40] Davidson J., Turner S., Handley H., Macpherson C., Dosseto A., "Amphibole "sponge" in arc crust?" Geology 35 (2007), 787-790. [DOI:10.1130/G23637A.1]
41. [41] Wang F.Y., Liu S.A., Li S.G., He Y.S., "Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu-Au mineralization". Lithos 156-159 (2013), 97-111. [DOI:10.1016/j.lithos.2012.10.017]
42. [42] McDonough W., Sun S., "The composition of the Earth", Chemical Geology 120 (1995), p. 223-253. [DOI:10.1016/0009-2541(94)00140-4]
43. [43] Sun W.D., Huang R., Li H., Yongbin H., "Porphyry deposits and oxidized magma". Ore Geology Reviews 65 (2015), 97-131. DOI: 10.1016/j.oregeorev.2014.09.004 [DOI:10.1016/j.oregeorev.2014.09.004]
44. [44] Hattori K., Wang J., Kobylinski C., Baumgartner R., Morfin S., Shen P., "Zircon composition: indicator of fertile igneous rocks related to porphyry copper deposits (Extended Abstract)", Soc. Geol. Applied Mineral Deposits 2 (2017), p. 295-298.
45. [45] Mungall J.E., "Roasting the mantle: slab melting and the genesis of major Au and Aurich Cu deposits", Geology 30 (2002), p. 915-918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 [DOI:10.1130/0091-7613(2002)0302.0.CO;2]
46. [46] Sun W.D., Liang H.Y., Ling M.X., Zhan M.Z., Ding X., Zhang H., Yang X.Y., Li Y.L., Ireland T.R., Wei Q.R., Fan W.M., "The link between reduced porphyry copper deposits and oxidized magmas", Geochim. Cosmochim. Acta 103 (2013b), p. 263-275. DOI:10.1016/j.oregeorev.2014.09.004 [DOI:10.1016/j.oregeorev.2014.09.004]
47. [47] Sun W.D., Bennett V.C., Eggins S.M., Arculus R.J., Perfit M.R., "Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results", Chem. Geol. 196 (2003b), p. 259-281. Doi: 10.1016/S0009-2541(02)00416-3 [DOI:10.1016/S0009-2541(02)00416-3]
48. [48] Sun W.D., Arculus R.J., Kamenetsky V.S., Binns R.A., "Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization", Nature 431 (2004a), p. 975-978. DOI: 10.1038/nature02972 [DOI:10.1038/nature02972]
49. [49] Hofmann A.W., "Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust", Earth Planet. Sci. Lett. 90 (1988), p. 297-314. [DOI:10.1016/0012-821X(88)90132-X]
50. [50] Lee C.T.A., Luffi P., Chin E.J., Bouchet R., Dasgupta R., Morton D.M., Le Roux V., Yin Q.Z., Jin D., "Copper systematics in arc magmas and implications for crust-mantle differentiation", Science 336 (2012), p. 64-68. DOI: 10.1126/science.1217313 [DOI:10.1126/science.1217313]
51. [51] Liu X., Xiong X., Audétat A., Li Y., Song M., Li L., Sun W., Ding X., "Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions", Geochim. Cosmochim. Acta 125 (2014), p. 1-22. [DOI:10.1016/j.gca.2013.09.039]
52. [52] Lorand J.P., "Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle". Geochim. Cosmochim. Acta 54 (1990), p. 1487-1492. [DOI:10.1016/0016-7037(90)90173-I]
53. [53] Mavrogenes J.A., O'Neill H.S.C., "The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas", Geochim. Cosmochim. Acta 63 (1999), p. 1173-1180. [DOI:10.1016/S0016-7037(98)00289-0]
54. [54] Vila T., Sillitoe R.H., Betzhold J., Viteri E., "The porphyry gold deposit at Marte, Northern Chile", Econ. Geol. Bull. Soc. Econ. Geol. 86 (1991), p. 1271-1286. [DOI:10.2113/gsecongeo.86.6.1271]
55. [55] Stern C.R., Funk J.A., Skewes M.A., Arevalo A., "Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit chile, and the role of sulfur- and copperrich magmas in its formation", Econ. Geol. 102 (2007), p.1335-1344. DOI:10.2113/gsecongeo.102.7.1335 [DOI:10.2113/gsecongeo.102.7.1335]
56. [56] Chou I.M., "Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor". Am. Mineral. 63 (1978), 690-703.
57. [57] Huebner J.S., Sato M., "The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers". Am. Mineral. 55 (1970), 934-952.
58. [58] Xiao L., Clemens J.D., "Origin of potassic (C-type) adakite magmas: experimental and field constraints". Lithos 95 (2007):399-414 [DOI:10.1016/j.lithos.2006.09.002]
59. [59] Rapp R.P., Shimizu N., Norman M.D., "Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa". Chem Geol 160 (1999):335-356 [DOI:10.1016/S0009-2541(99)00106-0]
60. [60] Shaw D. M., "Trace element fractkmation during anatexis". Geochim. cosmochim. Ada, 34 (1970), 331-40. [DOI:10.1016/0016-7037(70)90110-9]
61. [61] Hattori K., "Porphyry Copper Potential in Japan Based on Magmatic Oxidation State", Resource Geology, 68 (2018), p. 126-137. doi: 10.1111/rge.12160 [DOI:10.1111/rge.12160]
62. [62] Lee C.T.A., Luffi P., Le Roux V., Dasgupta R., Albarede F., Leeman W.P., "The redox state of arc mantle using Zn/Fe systematics". Nature 468 (2010), 681-685. [DOI:10.1038/nature09617]
63. [63] Oyarzun R., Marquez A., Lillo J., Lopez I., Rivera S., "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism". Mineral. Deposita 36 (2001), 794-798. [DOI:10.1007/s001260100205]
64. [64] Sun W.D., Ling M.X., Chung S.L., Ding X., Yang X.Y., Liang H.Y., Fan W.M., Goldfarb R., Yin Q.Z., "Geochemical constraints on adakites of different origins and copper mineralization", J. Geol. 120 (2012a), p. 105-120. [DOI:10.1086/662736]
65. [65] Sun W.D., Zhang H., Ling M.X., Ding X., Chung S.L., Zhou J.B., Yang X.Y., Fan W.M., "The genetic association of adakites and Cu-Au ore deposits", Int. Geol. Rev. 53 (2011), p. 691-703. [DOI:10.1080/00206814.2010.507362]
66. [66] Zhang H., Ling M.X., Liu Y.L., Tu X.L., Wang F.Y., Li C.Y., Liang H.Y., Yang X.Y., Arndt N.T., Sun W.D. "High oxygen fugacity and slab melting linked to Cu mineralization: evidence from Dexing porphyry copper deposits, southeastern China", J. Geol., 121 (2013), 289-305. Doi: 10.1086/669975 [DOI:10.1086/669975]
67. [67] Zhang H., Li C.Y., Yang X.Y., Sun Y.L., Deng J.H., Liang H.Y., Wang R.L., Wang B.H., Wang Y.X., Sun W.D., "Shapinggou: the largest Climax-type porphyry Mo deposit in China". Int. Geol. Rev. 56 (2013), 313-331. [DOI:10.1080/00206814.2013.855363]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.