Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 1051-1062 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoshab, Iranmanesh. Synthesis and study of structural and morphological properties of MoS2/Ag2S nanocomposites and investigating its photocatalytic properties. www.ijcm.ir 2020; 28 (4) :1051-1062
URL: http://ijcm.ir/article-1-1567-en.html
Abstract:   (1390 Views)
MoS2/Ag2S nanocomposite is synthesized by hydrothermal method without using inert atmosphere from green synthesized Ag nanoparticle. The synthesized samples were characterized and studied by X-Ray Diffraction (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Scaning Electron Microscope (SEM) and Transmision Electron Microscope (TEM) analysis. The optical properties of the samples were investigated by using UV-Vis absorption spectra. Also the formation of Ag nanoparticles via Sesbania sesban extract is confirmed by UV-Vis spectra. The hexagonal crystal structure of MoS2 and the monoclinic structure of Ag2S nanoparticles was confirmed by the result of X-ray diffraction pattern. SEM and TEM images showed the morphology and loading Ag2S on MoS2 structures. The photocatalytic activity of nanocomposite against of the methyl orange and methylene blue colors was evaluated by UV light. The results showed that the MoS2/Ag2S nanocomposite is a good destructive dye of methyl orange and to some extent methylene blue with UV light.
 
Full-Text [PDF 1969 kb]   (337 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Nasrallah T. B., Dlala H., Amlouka M., Belgacem S., Bernede J. C., "Some physical investigations on Ag2S thin films prepared by sequential thermal evaporation", Synthetic Metals 151 (2005) 225-230. [DOI:10.1016/j.synthmet.2005.05.005]
2. [2] Sadovnikov S. I., Gusev A. I., "Structure and properties of Ag2S/Ag semiconductor/metal heteronanostructure", Biointerface Research in Applied Chemistry 6 (2016) 1797-1804. [DOI:10.1007/s11051-016-3592-x]
3. [3] Pourahmad A., "Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution", Superlattices and Microstructures 52 (2012) 276-287. [DOI:10.1016/j.spmi.2012.05.009]
4. [4] Nagasuna K., Akita T., Fujishima M. and Tada H., "Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight", Langmuir 27 (2011) 7294-7300. [DOI:10.1021/la200587s]
5. [5] Jadhav U. M., Patel S. N., Patil R. S., "Synthesis of Silver Sulphide Nanoparticles by Modified Chemical Route For Solar Cell Applications", Research Journal of Chemical Sciences 3 (2013) 69-74.
6. [6] Awwad A. M., Salem N. M., Aqarbeh M. M. Abdulaziz F. M., "Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation", Chemistry international 6 (2020) 42-48.
7. [7] Di L., Yang H., Xian T., Liu X. and Chen X., "Photocatalytic and Photo-Fenton Catalyticv Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation", Nanomaterials 9 (2019) 399. [DOI:10.3390/nano9030399]
8. [8] Wei Z., Benlin D., Fengxia Z., Xinyue T., Jiming X., Lili Z., Shiyin L., Leung D. Y.C. and Cheng Sun, "A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities", Applied Catalysis B: Environmental 229 (2018) 171-180. [DOI:10.1016/j.apcatb.2018.02.008]
9. [9] Khanchandani S., P. K. Srivastava, Kumar S., Ghosh S. and Ganguli A. K., "Band Gap Engineering of ZnO using Core/Shell Morphology with Environmentally Benign Ag2S Sensitizer for E_cient Light Harvesting and Enhanced Visible-Light Photocatalysis", Inorganic Chemistry 53 (2014) 8902-8912. [DOI:10.1021/ic500518a]
10. [10] Zhao X., Yang H., Li R., Cui Z., and Liu X., "Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes", Environmental Science and Pollution Research 26 (2019) 5524-5538.‌ [DOI:10.1007/s11356-018-4050-3]
11. [11] Liu Y., Geng P., Wang J., Yang Z., Lu H., Hai J., Lu Z., Fan D. and Li M., "In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity", Journal of colloid and interface science 512 (2018) 784-791.‌ [DOI:10.1016/j.jcis.2017.10.112]
12. [12] Qiu X. P., Yu J. S., Xu H. M., Chen W. X., Hu W., Bai H. Y., Chen G. L., "Interfacial effect of the nanostructured Ag2S/Co3O4 and its catalytic mechanism for the dye photodegradation under visible light", Applied Surface Science 362 (2016) 498-505.‌ [DOI:10.1016/j.apsusc.2015.11.161]
13. [13] Xue B., Jiang H. Y., Sun T., Mao F., Ma C. C., and Wu J. K., "Microwave-assisted one-step rapid synthesis of ternary Ag/Ag2S/g-C3N4 heterojunction photocatalysts for improved visible-light induced photodegradation of organic pollutant", Journal of Photochemistry and Photobiology A: Chemistry 353 (2018) 557-563.‌ [DOI:10.1016/j.jphotochem.2017.12.021]
14. [14] Zhang H., Wei B., Zhu L., Yu J., Sun W., and Xu L., "Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity", Applied surface science 270 (2013) [DOI:10.1016/j.apsusc.2012.12.140]
15. ‌
16. [15] Gao H., Wang F., Wang S., Wang X., Yi Z., Yang H., "Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism", Materials Research Bulletin 115 (2019) 140-149.‌ [DOI:10.1016/j.materresbull.2019.03.021]
17. [16] Tian J., Yan T., Qiao Z., Wang L., Li W., You J., Huang B., "Anion-exchange synthesis of Ag2S/Ag3PO4 core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms", Applied Catalysis B: Environmental 209 (2017) 566-578.‌ [DOI:10.1016/j.apcatb.2017.03.022]
18. [17] Yu C., Wei L., Zhou W., Dionysiou D. D., Zhu L., Shu Q., and Liu H., "A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation", Chemosphere 157 (2016) 250-261.‌ [DOI:10.1016/j.chemosphere.2016.05.021]
19. [18] Hu X., Li Y., Tian J., Yang H., and Cui H., "Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures", Journal of Industrial and Engineering Chemistry 45 (2017) 189-196.‌ [DOI:10.1016/j.jiec.2016.09.022]
20. [19] Mak K. F., Shan J., "Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides", Nature Photonics 10 (2016) 216-226. [DOI:10.1038/nphoton.2015.282]
21. [20] Duan K., Du Y., Feng Q., Ye X., Xie H., Xue M., Wang C., "Synthesis of Platinum Nanoparticles by using Molybdenum Disulfide as a Template and its Application to Enzyme-like Catalysis", ChemCatChem 6 (2014) 1873-1876. [DOI:10.1002/cctc.201400051]
22. [21] Pourabbas B., Jamshidi B., "Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol", Chemical Engineering Journal 138 (2008) 55-62. [DOI:10.1016/j.cej.2007.05.028]
23. [22] Wang S., An C., Yuan J., "Synthetic fabrication of nanoscale MoS2-based transition metal sulfides", Materials 3 (2010) 401-433. [DOI:10.3390/ma3010401]
24. [23] He Z., Que W., "Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction", Applied Materials Today 3 (2016) 23-56. [DOI:10.1016/j.apmt.2016.02.001]
25. [24] Bai L., Cai X., Lu J., Li L., Zhong S., Wu L., Gong P., Chen J. and Bai S., "Surface and interface engineering in Ag2S@MoS2 core-shell nanowire heterojunctions for enhanced visible photocatalytic hydrogen production", ChemCatChem 10 (2018) 2107-2114. [DOI:10.1002/cctc.201701998]
26. [25] Huo P., Liu C., Wu D., Guan J., Li J., Wang H., Tang Q., Li X. Yan Y., Yuan S., "Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity", Journal of industrial and engineering chemistry 57 (2018) 125-133.‌ [DOI:10.1016/j.jiec.2017.08.015]
27. [26] Yu H., Liu W., Wang X., Wang F., "Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: a case study of TiO2/Ag-Ag2S photocatalyst", Applied Catalysis B: Environmental 225 (2018) 415-423.‌ [DOI:10.1016/j.apcatb.2017.12.026]
28. [27] Di L., Xian T., Sun X., Li H., Zhou Y., Ma J., and Yang H., "Facile preparation of CNT/Ag2S nanocomposites with improved visible and NIR light photocatalytic degradation activity and their catalytic mechanism", Micromachines 10 (2019) 503.‌ [DOI:10.3390/mi10080503]
29. [28] Wang Y., Sun M., Fang Y., Sun S., and He J., "Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS", Journal of materials science 51 (2016) [DOI:10.1007/s10853-015-9401-6]
30. ‌
31. [29] Noori F., Gholizadeh A., "Structural, optical, magnetic properties and visible light photocatalytic activity of BiFeO3/graphene oxide nanocomposites", Materials Research Express 6 (2020) 1250g1.‌ [DOI:10.1088/2053-1591/ab6807]
32. [30] Hu H., Deng C., Xu J., Zhang K. and Sun M., "Metastable h-MoO3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activity", Journal of Experimental Nanoscience 10 (2015) 1336-1346. [DOI:10.1080/17458080.2015.1012654]
33. [31] Krishnan U., Kaur M., Singh K., Kaur G., Singh P., Kumar M. and Kumar A., "MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant", Journal of Materials Science: Materials in Electronics 30 (2019) 3711-3721. [DOI:10.1007/s10854-018-00653-7]
34. [32] Cheah A., Chiu W. S., Khiew P. S., Nakajima H., Saisopa T., Songsiriritthigul P., Radiman S. and Hamid M. A. A., "Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution", Catalysis Science and Technology 5 (2015) 4133-4143. [DOI:10.1039/C5CY00464K]
35. [33] Peng Y., Meng Z., Zhong C., Lu J., Yu W., Yang Z. and Qian Y., "Hydrothermal synthesis of MoS2 and its pressure-related crystallization", Journal of Solid State Chemistry 159 (2001) 170-173. [DOI:10.1006/jssc.2001.9146]
36. [34] Solomon G., Mazzaro R., You S., Natile M. M., Morandi V., Concina I. and Vomiero A., "Ag2S/MoS2 nanocomposites anchored on reduced graphene oxide: Fast interfacial charge transfer for hydrogen evolution reaction", ACS applied materials and interfaces 11 (2019) 22380-22389. [DOI:10.1021/acsami.9b05086]
37. [35] Wang M., Ju P., Li W., Zhao Y. and Han X., "Ag2S nanoparticle-decorated MoS2 for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting", Dalton Transactions 46 (2017) 483-490. [DOI:10.1039/C6DT04079A]
38. [36] Etman A. S., Abdelhamid H. N., Yuan Y., Wang L., Zou X., Sun J., "Facile water-based strategy for synthesizing MoO3-x nanosheets: efficient visible light photocatalysts for dye degradation", ACS omega 3 (2018) 2193-2201. [DOI:10.1021/acsomega.8b00012]
39. [37] Osim W., Stojanovic A., Akbarzadeh J., Peterlik H. and W. H. Binder, "Surface modification of MoS2 nanoparticles with ionic liquid ligands: Towards highly dispersed nanoparticles", Chemical Communications 49 (2013) 9311-9313. [DOI:10.1039/c3cc45305g]
40. [38] Jiang D., Chen L., Xie J. and Chen M., "Ag2S/gC3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition", Dalton Transactions 43 (2014) 4878-4885.‌ [DOI:10.1039/C3DT53526F]
41. [39] Zamiri R., Ahangar H., A. Zakaria, A. Zamiri, G. Shabani M., Singh B. and Ferreira J. M. F., "The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared", Chemistry Central Journal 9 (2015) 1-6.‌‌ [DOI:10.1186/s13065-015-0099-y]
42. [40] Osim W., Stojanovic A., Akbarzadeh J., Peterlik H., Wolfgang Binder H., "Surface modification of MoS2 nanoparticles with ionic liquid-ligands: towards highly dispersed nanoparticles", Chemical Communications 49 (2013) 9311-9313.‌ [DOI:10.1039/c3cc45305g]
43. [41] Anandalakshmi K., Venugobal J., "Green synthesis and characterization of silver nanoparticles using Vitex negundo (Karu Nochchi) leaf extract and its antibacterial activity", Medicinal chemistry 7 (2017) 218-225.
44. [42] Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M., "Photoluminescence from chemically exfoliated MoS2", Nano Letters 11 (2011) 5111-5116. [DOI:10.1021/nl201874w]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb