Volume 28, Issue 1 (3-2020)                   www.ijcm.ir 2020, 28(1): 217-232 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sameti M, Zamanian H, Asadi Harooni H. Geochemical and fluid inclusion studies of Kalchuyeh Cu-Au epithermal mineralization in the central part of the Urumieh-Dokhtar magmatic arc. www.ijcm.ir 2020; 28 (1) :217-232
URL: http://ijcm.ir/article-1-1429-en.html
Abstract:   (2292 Views)
The Kalchuye Cu-Au deposit is located in the central part of the Urumieh – Dokhtar magmatic arc. This mineralization is mainly hosted by diorite, quartz diorite and andesite rocks. The mineralization is characterized by chalcopyrite, pyrite, galena and magnetite in the hypogen stage followed by chalcocite, covellite, malachite and goethite in supergen stage. According to the geochemical studies, the Lan/Ybn ratio is between 2.2 to 6.3 and Eu/Eu* varies from 0.7 to 1.1; so that intrusions which are the host of mineralization in the Kalchuye region represent characteristics of magmas in the subduction zone (enrichment of LILE, depletion of HFSE in association with negative Ti anomaly). Fluid inclusion data show the temperature of 150-310 ˚C, salinity of 0.1- 4 (wt%NaCl eq.) and depth of 400m, approximately, for the Klchuyeh deposit. Fluid evolution in the Kalchuye exhibits cooling, surface dilution and boiling. Evidences such as bounded and comb textures in quartz, bladed calcite, hydrothermal breccia, propelitic alteration and fluid inclusion information such as temperature and salinity prove the low-sulfidation epithermal nature for the Kalchuye deposition.
Full-Text [PDF 134 kb]   (652 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Hedenquist J.W., Izawa E., Arribas A., White N.C., "Epithermal gold deposits: styles, characteristics, exploration", Soc Resour Geology Tokyo Resource Geology Special Publication (1996) 1:18p.
2. [2] Singer B., Marchev P., "Temporal evolution of arc magmatism and hydrothermal activity, including epithermal gold veins, Borovitsa caldera, southern Bulgaria", Economic Geology 95 (2000) 1155-1164. [DOI:10.2113/gsecongeo.95.5.1155]
3. [3] Hezarkhani A., William-Jones A.E., "Controls of alteration and mineralization in the Sungun porphyry copper deposit: evidence from fluid inclusions and stable isotopes", Economic Geology 93 (1998) 651-670. [DOI:10.2113/gsecongeo.93.5.651]
4. [4] Shafiei B., Haschke M., Shahabpour J., "Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran", Mineralium Deposita 44 (2009) 265-283. [DOI:10.1007/s00126-008-0216-0]
5. [5] Hosseini-Dinani H., Bagheri H., Esmaeili-Vardanjani M., "Mineralization and structural features of Kalchouyeh copper-gold deposit (west-central Iran)", Arabian Journal of Geosciences 8 (2015) 3007-3018. [DOI:10.1007/s12517-014-1368-0]
6. [6] Stocklin J., "Structural history and tectonics of Iran; a review", American Association of Petroleum Geologists Bulletin, (1968) p. 52. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
7. [7] Zarasvandi A., Rezaei M., Raith J., Lentz D., Azimzadeh A., Pourkaseb H., "Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran", Journal of Asian Earth Sciences 10 (2016) 1-17. [DOI:10.3923/ajes.2017.1.8]
8. [8] Shahabpour J., "economic geology", Kerman, Bahonar university publication, (2006) 500.
9. [9] Zarasvandi A., Asadi F., Pourkaseb H., Ahmadnejad F., Zamanian H., "Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies (in Persian)", Journal of Economic Geology 7 (2016) 11-12.
10. [10] Berberian M., King G.C.P., "Toward a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Science 18 (1981) 210-265. [DOI:10.1139/e81-019]
11. [11] Hezarkhani A., "Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran", Journal of Asian Earth Sciences 27 (2006) 326-340. [DOI:10.1016/j.jseaes.2005.04.005]
12. [12] Mollai H., Sharma R., Pe-Pirer G., "Copper mineralization around the Ahar batholith, north of Ahar (NW Iran): evidence for fluid evolution and the origin of the skarn ore deposit", Ore Geology Reviews 35 (2009) 401- 414. [DOI:10.1016/j.oregeorev.2009.02.005]
13. [13] Mehvari R., Shamsi pour R., Bagheri H., Noghreian M., Maki zade M., "mineralogy and fluid inclusion studies in the Kalchuyeh Cu-Au deposit, eastern Isfahan (in Persian)", Journal of Economic Geology 1 (2008) 47-55.
14. [14] Ghasemi A., Talbot C.J., "A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran)", Journal of Asian Earth Sciences 26 (2006) 683-693. [DOI:10.1016/j.jseaes.2005.01.003]
15. [15] Zamanian H., Sameti M., Pazoki A., Barani N., Ahmadnejad F., "Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet-pyroxene chemistry and fluid inclusion studies", Arabian Journal of Geosciences 10 (2017) 54, DOI 10.1007/s12517-016-2785-z. [DOI:10.1007/s12517-016-2785-z]
16. [16] Zarasvandi A., Rezaei M., Sadeghi M., Lentz D., Adelpour M., Pourkaseb H., "Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh-Dokhtar magmatic arc (UDMA), Iran", Ore Geology Reviews70 (2015) 407-423. [DOI:10.1016/j.oregeorev.2015.01.010]
17. [17] Ramezani J., Tucker R., "The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics", Am J Sci 303 (2003) 622-665. [DOI:10.2475/ajs.303.7.622]
18. [18] Bagheri H., Moore F., Alderton D.H.M., "Cu-Ni-Co-As (U) mineralization in the Anarak area of Central Iran", Journal of Asian Earth Sci 29 (2007) 651-665. [DOI:10.1016/j.jseaes.2006.03.011]
19. [19] Foster R.P., "Gold Metallogeny and Exploration", Department of Geology University of Southampton (1996) 432.
20. [20] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): constraintsfrom collisional and earlier deformation", International Journal of Earth Sciences 94 (2005) 401-19. [DOI:10.1007/s00531-005-0481-4]
21. [21] Kazemi K., Kananian A., Xiao Y., Sarjoughian F., "Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas", Geoscience Frontiers 10 (2019) 705-723. [DOI:10.1016/j.gsf.2018.04.006]
22. [22] Amini B., Amini M., "Geological quadrangle map of Kajan 1:100, 000", Geological Survey of Iran, (2003).
23. [23] Craig J. R., Vaughan D. J., "Ore microscopy and ore petrography", Canada (1994) 434 pp.
24. [24] Shimizu T., "Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au-Ag deposit, Japan", Economic Geology 109 (2014) 2051-2065. [DOI:10.2113/econgeo.109.7.2051]
25. [25] Middlemost E.A.K., "Naming materials in the magma/igneous rock system", Earth Sciences Reviews 37 (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
26. [26] Zamanian H., Rahmani Sh., Jannessary M., Zareii Sahamieh R., Borna B., " Ore-genesis study of the Cu-Au vein deposit in the Tarom-granitoid (North Zanjan) based on mineralogical, geochemical and fluid inclusion evidences (in Persian)", 98:25 (2016) 255- 282.
27. [27] Sun S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.)", Magmatism in the Ocean Basins", 42. (1989) Geological Society (London), Special Publication, pp. 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
28. [28] Wang R., Richards J.P., Hou Z., Yang Z., Dufrane A., "Increased magmatic water content-the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the Eastern Gangdese Belt, Tibet", Economic Geology. 109 (2014) 1315-1339. [DOI:10.2113/econgeo.109.5.1315]
29. [29] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107 (2012) 295-332. [DOI:10.2113/econgeo.107.2.295]
30. [30] Yermakov N.P., "Research on the Nature of Mineral forming Solutions", Pergamon Press, Oxford, (1965) pp. 3-348.
31. [31] Rusk B., Reed M., "Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper Molybdenum Deposit at Butte, Montana", Economic Geology, 103 (2008) 307-334. [DOI:10.2113/gsecongeo.103.2.307]
32. [32] Shepherd T.J., Rankin A.H., Alderton D.H., "A practical guide to fluid inclusion studies", Glasgow, Blackie and son, (1985) p. 239.
33. [33] John D.A., Ayuso R.A., Barton M.D., Blakely R.J., Bodnar R.J., Dilles J.H., Gray F., Graybeal F.T., Mars J.C., McPhee D.K., Seal R.R., Taylor R.D., Vikre P.G., "Porphyry Copper Deposit Model", Scientific Investigations Report, USGS (2010) 169 p.
34. [34] Peter J. M., Scott S. D., "Windy Craggy, Northwestern British Columbia: the world's largest Besshi-type deposit. In: Barrie CT, Hannington MD (eds) Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings", Reviews in Economic Geology, 8 (1999) 261-295.
35. [35] Fournier R.O., "Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment", Economic Geology 94 (1999) 1193-1212. [DOI:10.2113/gsecongeo.94.8.1193]
36. [36] Malekzadeh Shafaroudi A., Karimpour M., "Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran", Journal of African Earth Sciences, 107 (2015) 1-14 [DOI:10.1016/j.jafrearsci.2015.03.015]
37. [37] Tosdal R.M., Richards J.P., "Magmatic and structural controls on the development of 942porphyry Cu±Mo±Au deposits, in Richards, J.P., and Tosdal, R.M., eds., Structural controls on 943ore genesis", Society of Economic Geologists, Reviews in Economic Geology 14 (2001) 157-181. [DOI:10.5382/Rev.14.06]
38. [38] Hedenquist J.W., Arribas A.R., Gonzalez-Urien E., "Exploration for epithermal gold deposits. In: Hagemann, S. G., Brown, P. E., (Eds). Gold in 2000", Reviews in Economic Geology, 13 (2000) 245-277. [DOI:10.5382/Rev.13.07]
39. [39] Corbett G.J., "Structural controls to, and exploration for, epithermal Au-Ag deposits", Australian Institute of Geoscientists Bulletin 56 (2012) 43-47.
40. [40] Dong G., Morrison G., Jaireth S., "Quartz textures in epithermal veins, Queensland - Classification, origin and implication", Economic Geology, 90 (1995) 1841-1656. [DOI:10.2113/gsecongeo.90.6.1841]
41. [41] Moncada D., Mutchler S., Nieto A., Reynolds T.J., Rimstidt Bodnar R.J., "Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration", Journal of Geochemical Exploration 114 (2012) 20-35. [DOI:10.1016/j.gexplo.2011.12.001]
42. [42] Carrillo Rosúa F.J., Morales Ruano S., Boyce A.J., Fallick A.E., "High and intermediate sulphidation environment in the same hydrothermal deposit: the example of Au-Cu Palai-Islica deposit, Carboneras (Almería)". Millpress, Rotterdam (2003) 445-448.
43. [43] Kuhestani H., Ghaderi M., Emami MH., Zao Kh., "The Chah zard deposit: Ag-Au epithermal mineralization with bereciation host rock in the central part of the Urumieh- Dokhtar belt", earth sciences, 22 (2013) 9-24.
44. [44] Fazli N., Ghaderi M., "Petrogenesis, alteration and mineralization of the Narbaghi Cu-Ag deposit, NE Saveh, central part of the Urumieh- Dokhtar magmatic arc", 18th Iranian Geological Society Conference, 2014.
45. [45] Heydari M., Ghaderi M., Kuhestani H., Hosseni M., "Touzlar Epithermal Au-Ag (Cu) Deposit, Subvolcanic Intrusion-related of Intra-arc Extensional Setting, Northwest Mahneshan, Iran", Earth sciences, 24 (2014) 329-348.
46. [46] Robb L.J., "Introduction to ore-forming processes", Blackwell science, Victoria, (2005) 373 pp.
47. [47] Yang Z., Hou Z., Xu J., Bian X., Wang G., Yang Z., Tianf S., Liu Y., Wang Z., "Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet", Gondwana Research. 26 (2014) 536-556. [DOI:10.1016/j.gr.2013.07.012]
48. [48] Zheng Y., Sun X., Gao S., Zhao Z., Zhang G., Wu S., You Z., Li J., "Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: implications for Eocene and Miocene magma sources and resource potential", Journal of Asian Earth Sci. 79 (2014) 842-857. [DOI:10.1016/j.jseaes.2013.03.029]
49. [49] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposit", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb