Volume 27, Issue 4 (12-2019)                   www.ijcm.ir 2019, 27(4): 781-794 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalilzadeh H, Alipour S, Abedini A. Geochemistry, tectonic setting and magmatic origin of the mineralized stock in SahebDivan porphyry copper system, NW Iran. www.ijcm.ir 2019; 27 (4) :781-794
URL: http://ijcm.ir/article-1-1363-en.html
1- Urmia University
Abstract:   (2549 Views)
SahebDivan porphyry copper system is located in Alborz-Azarbaijan magmatic zone at northwest Iran. Based on geological surveys, petrographic and geochemical studies, indicated that mineralized stock in this system mainly cosists of granodiorite, diorite and monzonite rocks. These rocks are peraluminous and belong to high-K calc-alkaline and shoshonitic magma series and plotted in the field of I-type granites. In Harker diagrams, SiO2 has a negative correlation with the elements of Al2O3, CaO, K2O, MgO, P2O5, TiO2, FeOt­, Co, V and positive correlation with Cr, La, Zr and Nb. Enrichment in large-ion lithophile elements (e.g., Cs, Th and U), depletion of high-field-strength elements (e.g., Nb, Ta and Ti) and enrichment in light rare earth elemements than heavy rare earth elements with negligible Eu anomaly is another geochemical features of SahebDivan granitoid rocks. Tectonic setting discrimination diagrams indicate that these stock formed in a post-collision volcanic arc environment in the active continental margin. Geochemical data, indicates that partial melting of the lower continental crust due to the penetration of mantle melts in equilibrium with the residual consisting of amphibole and pyroxene and pyroxene with next function of contamination and fractional crystallizatin processes played role in the formation and evolution of this rocks.
Full-Text [PDF 111 kb]   (728 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Stocklin J., Nabavi M.H., "Tectonic Map of Iran 1:2500000 Geological Survey of Iran", (1973).
2. [2] Moritz R., Mederer J., Ovtcharova M., Spikings R., Selby D., Melkonyan R., Hovakimyan S., Tayan R., Ulianov A., Ramazanov V., "Jurassic to Tertiary metallogenic evolution of the southernmost Lesser Caucasus, Tethys belt", 12th the Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, Uppsala, Sweden (2013).
3. [3] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., ״Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source״, Lithos 180-181 (2013) 109-127. [DOI:10.1016/j.lithos.2013.08.003]
4. [4] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L., "Temporal-spatial distribution and tectonic setting of porphyry Cu (Mo-Au) deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology", Ore Geology reviews, 70 (2015) 385-406. [DOI:10.1016/j.oregeorev.2015.03.003]
5. [5] Babakhani A.R., Hossein Kan N., Amidi M., ״Geological map of Lahroud; Scale, 1:100000״, Geological Survey of Iran (1991).
6. [6] NICICO., "Final report on the geological and exploration studies in SahebDivan area", Internal report (2010).
7. [7] NICICO., "Geological report and map of SahebDivan area; Scale, 1:5000", Internal report (2006).
8. [8] Middlemost E.A.K., "Naming materials in magma/igneous rock system", Earth Sci Rev 37 (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
9. [9] Shand S. J., "Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relatio to Ore-Deposits with a Chapter on Meteorite", John Wiley & Sons, New York (1943).
10. [10] Waight T. E., Weaver S. D., Muir R. J., Maas R., Eby, N., ˝The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition˝, Contribution to Mineralogy and Petrology, 130 (1998) 225-239. [DOI:10.1007/s004100050362]
11. [11] Ross P.S., Bedard J.H.,"Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams", Canadian Journal of Earth Sciences (2009). [DOI:10.1139/E09-054]
12. [12] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks in Turkey", Contrib. Mineral. Petr, 68 (1976) 63-81. [DOI:10.1007/BF00384745]
13. [13] Newberry R.J., Burns L.E., Swanson S.E., Smith T.E., ˝Comparative petrologic evolution of the Sn and W granites of Fairbanks Circle area, interior Alaska˝, Geol. Sot. Am. Prof. Pap., 246 (1990) 121-142. [DOI:10.1130/SPE246-p121]
14. [14] Chappell B.W., ״Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites״, Lithos 46) 1999(535-551. [DOI:10.1016/S0024-4937(98)00086-3]
15. [15] Clemens J.D., Stevens G., ״What controls chemical variation in granitic magmas? Lithos 134-135 (2012) 317-329. [DOI:10.1016/j.lithos.2012.01.001]
16. [16] Azman A. Ghani M., Searle L., Robb., Sun-Lin C., ״Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia״, Journal of Asian Earth Sciences (2013). [DOI:10.1016/j.jseaes.2013.05.013]
17. [17] Harker A., "The natural history of the igneous rocks", New York, The Macmillan Company (1909) 384 p.
18. [18] McDonough W. F., S. S. Sun., "The composition of the Earth", Chem. Geol., 120 (1995), 223-253. [DOI:10.1016/0009-2541(94)00140-4]
19. ‌[19] Boynton W.V., "Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry", Elsevier, Amsterdam (1984) pp. 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
20. [20] Pearce J. A., Harris N. B. W., Tindle A. J., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", J. Petrol., 25 (1984) 956-83. [DOI:10.1093/petrology/25.4.956]
21. [21] Rollinson HR., "Using Geochemical Data: Evaluation, Presentation, Interpretation", Longman Scientific and Technical, New York (1993) 352 pp.
22. [22] Ku¨‌ster D., Harms U., "Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review", Lithos 45(1998) 177-195. [DOI:10.1016/S0024-4937(98)00031-0]
23. [23] Wu F.Y., Jahn B.M., Wilde S.A, Lo C.H, Yui T.F., Lin Q., Ge W.C., Sun D.Y.,"Highly fractionated I-type granites in NE China (I): Geochronology and petrogenrsis", Lithos, 66 (2003) 241-273. [DOI:10.1016/S0024-4937(02)00222-0]
24. [24] Mortazavi M., R. Sparks., "Origin of rhyolite and rhyodacite lavas and associated 984 mafic inclusions of Cape Akrotiri, Santorini: the role of wet basalt in generating calcalkaline 985 silicic magmas, Contrib", Mineral. Petrol., 146(4) (2004) 397-413. [DOI:10.1007/s00410-003-0508-4]
25. [25] Chappell B. W., White A. J. R., "I- and S-type granites in the Lachlan Fold Belt", Transactions of the Royal Society of Edinburgh: Earth Sciences 83(1992) 1-26. [DOI:10.1017/S0263593300007720]
26. [26] Zhang Z. Y., Du Y. S., Teng C. Y., Zhang J., Pang Z. S., ˝Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China˝, Journal of Asian Earth Sciences, 79 (2014) 792-809. [DOI:10.1016/j.jseaes.2013.04.007]
27. [27] Aldanmaz E., Pearce, J. A., Thirlwall M. F., Mitchell J.G., "Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey", Journal of Volcanology and Geothermal Research 102(2000) 67-95. [DOI:10.1016/S0377-0273(00)00182-7]
28. [28] Davidson J., Turner S., Handley H., Macpherson C., Dosseto A.,"Amphibole "sponge" in arc crust? ", Geology 35 (2007) 787-790. [DOI:10.1130/G23637A.1]
29. [29] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107(2012). [DOI:10.2113/econgeo.107.2.295]
30. [30] Taylor Y., McLennan SM., "The Continental Crust: Its Composition and Evolution", 1st ed. Oxford, UK: Blackwell (1985).
31. [31] Schandl E. S., Gorton MP., "Application of high field strength elements to discriminate tectonic setting in VMS environments", Economic Geology.97 (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
32. [32] Cabanis B., Lecolle M., "Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des procésses de mélange et/ou de contamination crustale", C. R. Acad. (1989) Sci. 2, 2023-2029.
33. [33] Whalen J. B, McNicoll V. J., van Staal., C. R., Lissenberg C. J., Longstaffe F. J., Jenner G. A., van Breeman O., "Spatial., temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off", Lithos 89 (2006) 377-404. [DOI:10.1016/j.lithos.2005.12.011]
34. [34] Swinden H.S., Jenner, G. A., Szybinski Z. A., "Magmatic and tectonic evolution of the Cambrian-Ordovician Laurentian margin of Iapetus", Geological Society of America 191(1997) 367-395. [DOI:10.1130/0-8137-1191-6.337]
35. [35] Whalen J. B., Jenner G. A., Longstaffe F. J., Gariepy C., Fryer B., "Implications of granitoid geochemical and isotopic (Nd,O,Pb) data from the Cambro-Ordovician Notre Dame arc for the evolution of the Central Mobile Belt, Newfoundland Appalachians" ,Geology 21(1993) 825-828.
36. [36] Gao Y., Hou Z., Kamber B. S., Wei R., Meng X., Zhao, R., Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogyand Petrology, 153 (2007) 105-120. [DOI:10.1007/s00410-006-0137-9]
37. [37] Martin H., "Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas", Geology 14 (9) (1986)753-756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 [DOI:10.1130/0091-7613(1986)142.0.CO;2]
38. [38] Kay S.M., Mpodozis C., "Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust", GSA TODAY (Geol Soc Am) 11(2001) 4-9. https://doi.org/10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2 [DOI:10.1130/1052-5173(2001)0112.0.CO;2]
39. [39] Rapp R.P., Watson E.B., ״Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling״, Journal of Petrology 36 (1995) 891-931. [DOI:10.1093/petrology/36.4.891]
40. [40] Janoušek V., Braithwaite C.J., Bowes D., Gerdes A., ״Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic״, Lithos 78 (2004) 67-99. [DOI:10.1016/j.lithos.2004.04.046]
41. [41] MingJian C., KeZhang Q., GuangMing L., Noreen J. E., Pete H., LuYing J., ״Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China״, Lithos 246-247 (2016) 13-30. [DOI:10.1016/j.lithos.2015.12.019]
42. [42] Harris N. B. W., Duyverman H. J., Almand D.C., "The trace element and isotope geochemistry of the Sabaloka igneous complex, Sudan", Journal of Geological Society of London 140(1983) 245-256. [DOI:10.1144/gsjgs.140.2.0245]
43. [43] Bonin B., ״Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review״, Lithos 78 (2004) 1-24. [DOI:10.1016/j.lithos.2004.04.042]
44. [44] De Yoreo J. J., Lux D. R., Guidotti C. V., ״The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts״, Geol Soc London Spec Publ (1989) 43. [DOI:10.1144/GSL.SP.1989.043.01.12]
45. [45] Defant M.J., Drummond M.S., ״Derivation of some modern arc magmas by melting of young subducted lithosphere״, Nature 347(1990) 662-665. [DOI:10.1038/347662a0]
46. [46] Haschke M., Sieble W., Gunther A., Scheuber, E., "Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21º-26ºS)‌", Journal of Geophysical Research 107 (2002) BI. Doi: lo.1029/2001JB000328 (ECU 6-1-18). [DOI:10.1029/2001JB000328]
47. [47] Furman T., "Geochemistry of East African Rift Basalts: on overview. Journal of African Earth Science", (2007). [DOI:10.1016/j.jafrearsci.2006.06.009]
48. [48] Hofmann A. W., Jochum K. P., Seofert M., White W. M., "Nb and Pb in oceanic basalts: new constrains on mantel evolution", Earth Planet (1986) Sci. Lett. 79.33- 45. [DOI:10.1016/0012-821X(86)90038-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb