Volume 27, Issue 2 (7-2019)                   www.ijcm.ir 2019, 27(2): 307-320 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalili K, Nosouhian N, Torabi G. Mineral chemistry using for evaluation of the Esmaeilabad granite generation in the Posht-e-Badam area (Central- East Iranian Microcontinent) . www.ijcm.ir 2019; 27 (2) :307-320
URL: http://ijcm.ir/article-1-1267-en.html
Abstract:   (3006 Views)
The Esmaeilabad granitic body with the Late Triassic age is situated in the central part of the Posht-e-Badam block (Central- East Iranian Microcontinent), in the northeastern of the Yazd Province. This granitic body cross cut the metamorphic rocks of the Posht-e-Badam complex and covered by the Cretaceous limestone. Rock forming minerals of the studied granites are K-feldspar (orthoclase), plagioclase (andesine, oligoclase), quartz, amphibole (magnesio-hornblende), biotite, apatite, titanite and zircon. According to the mineral chemistry analyses, amphiboles represent the igneous nature. Biotites are rich in Magnesium. Chemical characteristics of biotites indicate that they are primary biotites which are generated by calc-alkaline magma. Chemical composition of the amphiboles and biotites in the Esmaeilabad granites suggest that they belong to the I-type granites and generate in an environment with high fO2. Geothermobarometry estimations yield temperatures between 550 to 700 oC and pressures in the range of 2 to 3.8 kbar. Based on the geological position and age of the studied rocks, generation of this granitic body can be related to the subduction and closure of the Paleo-Tethys Ocean in the western part of the Central- East Iranian Microcontinent, which can be the reason for granitic plutonism in this area.
Full-Text [PDF 119 kb]   (902 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Kemp A.I.S., Hawkesworth C.J., "Granitic perspectives on the generation and secular evolution of the continental crust". In: Rudnick R.L. (Eds.), "The crust", Elsevier-Pergamon, Oxford (2003) 349-410. [DOI:10.1016/B0-08-043751-6/03027-9]
2. [2] Clarke D.B., "Granitoid rocks", Chapman and Hall, London (1992) 283 p.
3. [3]Frost C.D., Frost B.R., "Reduced rapakivi-type granites: the tholeiite connection", Geology 25 (1997) 647-650. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2 [DOI:10.1130/0091-7613(1997)0252.3.CO;2]
4. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2 https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2 [DOI:10.1130/0091-7613(1997)0252.3.CO;2]
5. [4] Chen B., Jahn B.M., Wilde S.A., Xu B., "Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications", Tectonophysics 328(1) (2000) 157-182. [DOI:10.1016/S0040-1951(00)00182-7]
6. [5] Chappell B.W., White A.J.R., "Two contrasting granite types", Pacific Geology 8 (1974) 173-174.
7. [6] Davoudzadeh M., "Geology of Iran". In: Moores E.M., Fairbridge R.W. (Eds.),"Encyclopedia of Asian and European Regional Geology", Chapman and Hall, London (1997) 384-405. [DOI:10.1007/1-4020-4495-X_50]
8. [7] Ramezani J., Tucker R., "The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics", American Journal of Science 303 (2003) 622-665. [DOI:10.2475/ajs.303.7.622]
9. [8] Verdel C., Wernicke B.P., Ramezani J., Hassanzadeh J., Renne P.R., Spell T.L., "Geology and thermochronology of Tertiary cordilleran-style metamorphic core complexes in the Saghand region of Central Iran", Geological Society of America Bulletin 119 (2007) 961-977. [DOI:10.1130/B26102.1]
10. [9] Haghipour A., "Etude geologique de la region de Biabanak-Bafq (Iran Central) petrologie et tectonique du socle Percambrien et de sa couverture", Universite Scientifique et Medicale de Grenoble, France (1974) 403 p.
11. [10] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
12. [11] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock forming minerals", Longman, London (1992) 528 p.
13. [12] Giret A., Bonin B., Léger J.M., "Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring complexes", The Canadian Mineralogist 18 (1980) 481-495.
14. [13] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Geomaterials (Mineralogy) Geoscience 337 (2005) 1415- 1420. [DOI:10.1016/j.crte.2005.09.002]
15. [14] Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D., "Nomenclature of the amphibole supergroup", American Mineralogist 97(2012) 2031-2048. [DOI:10.2138/am.2012.4276]
16. [15] Zen E., "Phase relations of peraluminous granitic rocks and their petrogenetic implications", Earth Planetary Sciences 16 (1988) 21-52. [DOI:10.1146/annurev.ea.16.050188.000321]
17. [16] Anderson J.L., "Status of thermo-barometry in granitic batholiths", Earth Science Review 87 (1996) 125-138. [DOI:10.1017/S0263593300006544]
18. [17] Anderson J.L., Smith D.R., "The effect of temperature and fO2 on the Al-in-hornblende barometer", American Mineralogist 80 (1995) 549-559. [DOI:10.2138/am-1995-5-614]
19. [18] Abbot R.N., Clarke D.B., "Hypothetical liquids relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H2O)<1", Canadian Mineralogist 17 (1979) 549-560.
20. [19] Ernest W.G., Liu J., "Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB, a semiquantitative thermobarometer", American Mineralogist 83 (1998) 952-969. [DOI:10.2138/am-1998-9-1004]
21. [20] Holland T., Blundy J., "Non-ideal interaction in calcic amphibole and their bearing on amphibole-plagioclase thermometry", Contributions to Mineralogy and Petrology 116 (1994) 433-447. [DOI:10.1007/BF00310910]
22. [21] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer", Contributions to Mineralogy and Petrology 110 (1992) 304-310. [DOI:10.1007/BF00310745]
23. [22] Johnson M.C., Rutherford M.J., "Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks", Geology 17 (1989) 837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
24. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
25. [23] Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons", American Mineralogist 72 (1987) 231-239.
26. [24] Hammarstrom J.M., Zen E., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist 71 (1986) 1297-1313.
27. [25] Jarrar G.H., "Mineral chemistry in dioritic hornblendite from Wadi Araba, southwest Jordan", Journal of African Earth Sciences 26 (1998) 285-295. [DOI:10.1016/S0899-5362(98)00011-6]
28. [26] Helmy H.M., Ahmed A.F., El Mahallawi M.M., Ali S.M., "Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications", Journal of African Earth Sciences 38 (2004) 255-268. [DOI:10.1016/j.jafrearsci.2004.01.002]
29. [27] Wones D.R., "Significance of the assemblage titanite+magnetite+quarts in granitic rocks", American Mineralogist 74 (1989) 744-749.
30. [28] Nachit H., "Contribution à ľétude analytique et expérimentale des biotite des granitoïdes applications typologiques", PhD thèsis, Université de Bretagne occidentale, Brest, France (1986) 181 p.
31. [29] Partin E., Hewitt D.A., Wones D.R., "Quantification of ferric iron in biotite", Geological Society American, Abstract with program 15 (1983) 656.
32. [30] Abbot R.N., Clarke D.B., "Hypothetical liquids relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H2O)<1", Canadian Mineralogist 17 (1979) 549-560.
33. [31] Abdel-Rahman A., "Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas", Journal of Petrology 35(2) (1994) 525-541. [DOI:10.1093/petrology/35.2.525]
34. [32] Jiang Y.H., Jiang S.Y., Ling H.F., Zhou X.R., Rui X.J., Yang W.Z., "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses", Lithos 63 (2002) 165-187. [DOI:10.1016/S0024-4937(02)00140-8]
35. [33] Coltorti M., Bondaiman C., Faccini B., Grégoire M., ƠReilly S.Y., Powell W., "Amphiboles from supra-subduction and intraplate lithospheric mantel", Lithos 99 (2007) 68-84. [DOI:10.1016/j.lithos.2007.05.009]
36. [34] Stussi J.M., Cuney M., "Nature of biotites from alkaline and peraluminous magmas by Abdel-Rahman: a comment", Journal of Petrology 37 (1996) 1025-1029. [DOI:10.1093/petrology/37.5.1025]
37. [35] Stone D., "Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior province, Ontario, Canada", Canadian Mineralogist 38 (2000) 455-470. [DOI:10.2113/gscanmin.38.2.455]
38. [36] Stein E., Dietl E., "Hornblende thermobarometry of granitoids from the central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald", Mineralogy and Petrology 72 (2001) 185-207. [DOI:10.1007/s007100170033]
39. [37] Jakes P., White A.J.R., "Major and trace element abundances in volcanic rocks of orogenic areas", Geological Society of America Bulltein 83 (1972) 29-40. [DOI:10.1130/0016-7606(1972)83[29:MATEAI]2.0.CO;2]
40. [38] Nosouhian N., Petrology of the Paleozoic metaophiolite and Mesozoic felsic dykes swarm in the west and southwest of the Bayazeh (South of Khur- Central Iran). Theses Phd, Esfahan University (2016) 269 p.
41. [39] Bagheri S., "The exotic Paleo-Tethys terrane in Central Iran: new geological data from Anarak, Jandaq and Posht-e-Badam areas", Ph.D thesis, Lausanne University (2007) 208 p.
42. [40] Bagheri S., Stampfli G.M., "The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implication", Tectonophysics 451 (2008) 123-155. [DOI:10.1016/j.tecto.2007.11.047]
43. [41] Bayat F., Torabi G., "Alkaline lamprophyric province of Central Iran", Island Arc 20 (2011) 386-400. [DOI:10.1111/j.1440-1738.2011.00776.x]
44. [42] Nosouhian N., Torabi G., Arai S., "Metapicrites of the Bayazeh ophiolite (Central Iran), a trace of Paleo-Tethys subduction-related mantle metasomatism", Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 271 (2014) 1-19. [DOI:10.1127/0077-7749/2014/0372]
45. [43] Khalili K., Torabi G., Arai S., "Metamorphism of peridotites from Posht-e-Badam Paleozoic ophiolite (Yazd Province, Central Iran)", Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 280 (2016) 59-77. [DOI:10.1127/njgpa/2016/0565]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb