Volume 27, Issue 1 (4-2019)                   www.ijcm.ir 2019, 27(1): 231-244 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alidaei M, Izadifard M, Ghazi M E. Increasing of solar cell stability using Br-doped CH3NH3PbI3 perovskite absorber layers. www.ijcm.ir 2019; 27 (1) :231-244
URL: http://ijcm.ir/article-1-1238-en.html
Abstract:   (3749 Views)
The CH3NH3PbI3 is one of the most widely used and famous lead halide perovskite absorber layer for using in perovskite solar cells. One of the ways to deal with the instability problem of this perovskite structure in environmental condition is bromide doping in this composition. In this work, the structural and optical properties of the bromide doped CH3NH3PbI3 absorber layers were studied as well as J-V characteristics of solar cell devices based on this absorber layer were also measured and analyzed. Photovoltaic parameters of the fabricated solar cell were measured continuously for 162 days. The results of this study showed that even though the bromide-free perovskite devices has the highest PCE (11.65%), but suffer from a significant drop in PCE (86%) during the measured time period . Comparison of the results showed that the lowest rate of efficiency loss (1%) was obtained for the solar cell with a 1: 1 molar iodine-bromide ratio with an energy conversion efficiency of 9%.
Full-Text [PDF 117 kb]   (1146 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Stoumpos C.C., Malliakas C.D., Kanatzidis M.G., "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties", Inorganic chemistry 52 (2013) 9019-9038. [DOI:10.1021/ic401215x]
2. [2] Cao K., Li H., Liu S., Cui J., Shen Y., Yang m., "MAPbI3− xBrx mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis", Nanoscale 8 (2016) 8839-8846. [DOI:10.1039/C6NR01043A]
3. [3] Kim H.S., Park N.G., "Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer",The journal of physical chemistry letters 5 (2014) 2927-2934. [DOI:10.1021/jz501392m]
4. [4] Eperon G.E., Burlakov V.M., Docampo P., Goriely A., Snaith H.J., "Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells", Advanced Functional Materials 24 (2014) 151-157. [DOI:10.1002/adfm.201302090]
5. [5] Kiermasch D., Rieder p., Tvingstedt K., Baumann A., Dyakonov V., "Improved charge carrier lifetime in planar perovskite solar cells by bromine doping", Scientific reports 6 (2016) 39333. [DOI:10.1038/srep39333]
6. [6] Liu D., Kelly T.L., "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques" Nature photonics 8 (2014) 133-138. [DOI:10.1038/nphoton.2013.342]
7. [7] Liu M., Johnston M.B., Snaith H.J., "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature 501 (2013) 395. [DOI:10.1038/nature12509]
8. [8] Pockett A., Eperon G.E., Peltola T., Snaith H.J., Walker A., Peter L.M., Cameron P.J., "Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy" The Journal of Physical Chemistry C 119 (2015) 3456-3465. [DOI:10.1021/jp510837q]
9. [9] Zhang T., Yang M., Zhao Y, Zhu K, "Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion" Nano letters 15(2015) 3959-3963. [DOI:10.1021/acs.nanolett.5b00843]
10. [10] Abbas H.A., Kottokkaran R., Ganapathy B, Samiee M., Zhang L., Kitahara A., Noack M., Dalal V.L., "High efficiency sequentially vapor grown nip CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer", APL Materials 3 (2015) 016105. [DOI:10.1063/1.4905932]
11. [11] Yaghoobi Nia N., Matteocci F., Cina L., Di Carlo A., "High Efficiency Perovskite Solar Cell Based on Poly (3-hexylthiophene)(P3HT): The Influence of P3HT Molecular Weight and Mesoscopic Scaffold Laye", ChemSusChem 10 (2017) 3854-3860. [DOI:10.1002/cssc.201700635]
12. [12] Kojima A., Teshima K., Shirai Y., Miyasaka T., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells",Journal of the American Chemical S L., ociety 131(2009) 6050-6051.
13. [13] Yang W.S., Park B.W., Jung E.H., Jeon N.J., Kim Y.C., Lee D.U., Shin S.S., Seo J., Kim E.K., Noh J.H., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells", Science 356 (2017) 1736-1739. [DOI:10.1126/science.aan2301]
14. [14] Niu G., Guo X., Wang L., "Review of recent progress in chemical stability of perovskite solar cells", Journal of Materials Chemistry A 3 (2015) 8970-8980. [DOI:10.1039/C4TA04994B]
15. [15] Chen W., Wu Y., Yue Y., Liu J., Zhang W., Yang X., Chen H., Bi E., Ashraful I., Grätzel M., "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers", Science 350 (2015) 944-948. [DOI:10.1126/science.aad1015]
16. [16] Song J., Zheng E., Bian J., Wang X.F., Tian W., Sanehira Y., Miyasaka T., "Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cell", Journal of Materials Chemistry A 3 (2015)10837-10844. [DOI:10.1039/C5TA01207D]
17. [17] Kwon Y.S., Lim J., Yun H.J., Kim Y.H., Park T., "A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite", Energy & Environmental Science 7 (2014) 1454-1460. [DOI:10.1039/c3ee44174a]
18. [18] Tripathi N., Yanagida M., Shirai Y., Masuda T., Han L., Miyano K., "Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method", Journal of Materials Chemistry A 3 (2015) 12081-12088. [DOI:10.1039/C5TA01668A]
19. [19] Smith I.C., Hoke E.T., Solis-Ibarra D., McGehee M.D., Karunadasa H.I., "A layered hybrid perovskite solar-cell absorber with enhanced moisture stability", Angewandte Chemie 126 (2014) 14414-14417. [DOI:10.1002/ange.201406466]
20. [20] Noh J.H., Im S.H., Heo J.H., Mandal T.N., Seok S.I., "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells", Nano letters 13 (2013)1764-1769. [DOI:10.1021/nl400349b]
21. [21] Hao F., Stoumpos C.C., Cao D.H., Chang R.P., Kanatzidis M.G., "Lead-free solid-state organic-inorganic halide perovskite solar cells", Nature Photonics 8 (2014) 489-494. [DOI:10.1038/nphoton.2014.82]
22. [22] Saparov B., Hong F., Sun J.P., Hong H.S., Meng W., Cameron S., Hill I.G., Yan Y., Mitzi D.B., "Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor", Chem. Mater 27 (2015) 5622-5632. [DOI:10.1021/acs.chemmater.5b01989]
23. [23] Qiu J., Qiu Y., Yan K., Zhong M., Mu C., Yan H., Yang S., "All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays", Nanoscale 5 (2013) 3245-3248. [DOI:10.1039/c3nr00218g]
24. [24] Murali B., Dey S., Abdelhady A.L., Peng W., Alarousu E., Kirmani A.R., Cho N., Sarmah S.P., Parida M.R., Saidaminov M.I., "Surface restructuring of hybrid perovskite crystals", ACS Energy Letters 1 (2016) 1119-1126. [DOI:10.1021/acsenergylett.6b00517]
25. [25] Fedeli P., Gazza F., Calestani D., Ferro P., Besagni T., Zappettini A., Calestani G., Marchi E., Ceroni P., Mosca R., "Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br, I) Perovskite Films", The Journal of Physical Chemistry C 119 (2015) 21304-21313. [DOI:10.1021/acs.jpcc.5b03923]
26. [26] Tauc J., Menth A., "States in the gap", Journal of non-crystalline solids 8 (1972) 569-585. [DOI:10.1016/0022-3093(72)90194-9]
27. [27] Hoke E.T., Slotcavage D.J., Dohner E.R., Bowring A.R., Karunadasa H.R., McGehee M.D., "Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics", Chemical Science 6 (2015) 613-617. [DOI:10.1039/C4SC03141E]
28. [28] Zhou Y., Zhou Z., Chen M., Zong Y., Huang J., Pang S., Padture N.P., "Doping and alloying for improved perovskite solar cells", Journal of Materials Chemistry A 4 (2016) 17623-17635. [DOI:10.1039/C6TA08699C]
29. [29] Tu Y., Wu J., Lan Z., He X., Donh J., Jia J., Guo P., Lin J., Huang M., Huang Y., "Modulated CH3NH3PbI3− xBrx film for efficient perovskite solar cells exceeding 18%", Scientific Reports 7 (2017) 44603. [DOI:10.1038/srep44603]
30. [30] Sutter-Fella C.M., Li Y., Amani M., Ager J.W., Toma F.M., Yablonovitch E., Sharp I.D., Javey A., "High photoluminescence quantum yield in band gap tunable bromide containing mixed h alide perovskites", Nano Lett 16 (2016) 800-806. [DOI:10.1021/acs.nanolett.5b04884]
31. [31] Chen J., Shi T., Li X., Zhou B., Cao H., Wang Y., "Origin of the high performance of perovskite solar cells with large grains", Applied Physics Letters 108 (2016) 053302. [DOI:10.1063/1.4941238]
32. [32] Ren X., Yang Z., Yang D., Zhang X., Cui D, Liu Y., Wei Q., Fan H., Liu S.F., "Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature", Nanoscale 8 (2016) 3816-3822. [DOI:10.1039/C5NR08935B]
33. [33] Green M.A., "Solar cell fill factors: General graph and empirical expression", Solid-State Electronics 24 (1981) 788-789. [DOI:10.1016/0038-1101(81)90062-9]
34. [34] Jeon N.J., Noh J.H., Kin Y.C., Yang W.S., Ryu S., Seok S.I., "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nature materials 13 (2014) 897-903. [DOI:10.1038/nmat4014]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb