Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 901-914 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi A, Ahmadi A, Partabian A. Effect of hydrothermal alteration processes on the chemical composition of the extrusive section of the Marivan-Palangan ophiolite complex, Zagros, West of Iran. www.ijcm.ir 2019; 26 (4) :901-914
URL: http://ijcm.ir/article-1-1199-en.html
1- University of Sistan  Baluchestan
Abstract:   (3086 Views)
One of the most prominent cases of the study of alteration processes and their effect on geochemistry is the ophiolite investigation. The Marivan-Palangan ophiolite (MPO) complex is a part of the Neotethyan ophiolites, which situated in the Kurdistan Province, western Iran. The studied samples reveal the occurrence of the secondary minerals such as epidote group, chlorite, zeolites, and less calcite and iron hydroxides in the form of veins, vesicles and fractures infilling, and replacement phases. The element concentration variation versus Loss on ignition (LOI), normalization of the samples as to fresh sample in the study area and standard sample, and immobile element modeling indicate that element contents changes vary depending on the degree of alteration so that the concentration of Large-Ion Lithophile Elements (LILE) such as Rb, Cs, K, Ba, and Na shown a significant increase. CaO and FeO oxides are relatively depleted. Light Rare Earth Elements (LREE) display slight enrichment, while Middle Rare Earth Elements (MREE) and Heavy Rare Earth Elements (HREE) are almost constant. Therefore, in evaluation of the geochemical characteristics of extrusive section of the MPO complex, the effect of alteration on the changes in the concentration of elements, in particular LILEs, CaO, FeO and also LREEs should be considered.
Full-Text [PDF 126 kb]   (816 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Parsons B., "The rates of plate creation and consumption", Geophysical Journal international 67 (1981) 437-448. [DOI:10.1111/j.1365-246X.1981.tb02759.x]
2. [2] Bird P., "An updated digital model of plate boundaries", Geochemistry Geophysics Geosystems 4 (2003) No: 3, Paper number 1027.
3. [3] Cheminee J.L., Stoffers P., McMurtry G., Richnow H., Puteanus D., Sedwick P., "Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount", Earth and Planetary Science Letters 107 (1991) 318-327. [DOI:10.1016/0012-821X(91)90079-W]
4. [4] Alt J.C., Honnorez J., Laverne C., Emmermann R., "Hydrothermal alteration of a 1km section through the upper oceanic crust, Deep Sea Drilling Project hole 504B: Mineralogy, chemistry, and evolution of seawater-basalt interaction", Journal of Geophysical Research 91 (1986) 10309-35. [DOI:10.1029/JB091iB10p10309]
5. [5] Alt J.C., "Alteration of the upper oceanic crust: mineralogy, chemistry, and processes", In: Davis E.E., Elderfield H., (Editors), Hydrogeology of the Oceanic Lithosphere, Cambridge University Press, Cambridge (2004) 495-533.
6. [6] Sleep N.H., "Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes", Journal of Geophysical Research 96 (1991) 2375-2387. [DOI:10.1029/90JB02335]
7. [7] Stein C.A., Stein S., "Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow", Journal of Geophysical Research 99 (1994) 3081-3095. [DOI:10.1029/93JB02222]
8. [8] Bideau D., Hebert R., Hekinian R., Cannat M., "Metamorphism of deep-seated rocks from the Garrett Ultrafast transform (East Pacific rise near 13250S)", Journal of Geophysical Research 96 (1991) 10079-1009. [DOI:10.1029/91JB00243]
9. [9] Kelley D.S., Gillis K.M., Thompson G., "Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge", Journal of Geophysical Research 98 (1993) 19579-19596. [DOI:10.1029/93JB01432]
10. [10] Alt J.C., "Subseafloor processes in mid-ocean ridge hydrothermal systems", In: Humphris S.E., Zierenberg R.A., Mullineaux L.S., Thomson R.E., (Editors) Seafloor hydrothermal systems, Geophysical monograph, American Geophysical ::union::, Washington, DC (1995) 85-114.
11. [11] Gillis K.M., "Controls on hydrothermal alteration in a section of fast-spreading oceanic crust", Earth and Planetary Science Letters 134 (1995) 473-489. [DOI:10.1016/0012-821X(95)00137-2]
12. [12] Manning C.E., Weston P.E., Mahon K.I., "Rapid high-temperature metamorphism of East Pacific Rise gabbros from Hess Deep", Earth and Planetary Science Letters 144 (1996) 123-132. [DOI:10.1016/0012-821X(96)00153-7]
13. [13] Staudigel H., Plank T., White W., Schmincke H.U., "Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418", In: Bebout G.E., Scholl D.W., Kirby S.H., Platt J.P., (Editors), Subduction top to bottom, American Geophysial ::union::, Geophysical Monograph series, Washington, DC 96(1996) 19-38. [DOI:10.1029/GM096p0019]
14. [14] Staudigel H., Tauxe L., Gee J.S., Bogaard P., Haspels J., Kale G., Leenders A., Meijer P., Swaak B., Tuin M., Van Soest M.C., Verdurmen E.A.T., Zevenhuizen A., "Geochemistry and intrusive directions in sheeted dikes in the Troodos Ophiolite: Implications for Mid-Ocean Ridge Spreading Centers", Geochemistry Geophysics Geosystems 1 (1999) Paper number 1999GC000001.
15. [15] Cann P.J., Gillis K., "Hydrothermal insights from the Troodos ophiolite, Cyprus", In: Davis E.E., Elderfield. H., (Editors), Hydrogeology of the Oceanic Lithosphere, Cambridge University Press, Cambridge (2004) 274-310
16. [16] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
17. [17] Stöcklin J., "Structural history and tectonics of Iran: a review", AAPG Bulletin 52 (1968) 1229-1258.
18. [18] Berberian M., King G., "Towards a paleogeography and tectonic evolution of Iran", Canadian journal of earth sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
19. [19] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process", Geological Magazine 148 (2011) 692-725. [DOI:10.1017/S001675681100046X]
20. [20] Homke S., Vergés J., Serra-Kiel J., Bernaola G., Sharp I., Garcés M., Montero-Verdú I., Karpuz R., Goodarzi M.H., "Late Cretaceous–Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran", Geological Society of America Bulletin 121 (2009) 963-978. [DOI:10.1130/B26035.1]
21. [21] Homke S., Vergés J., Van Der Beek P., Fernàndez M., Saura E., Barbero L., Badics B., Labrin E., "Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: evidence for a long-lived orogeny", Basin Research 22 (2010) 659-680. [DOI:10.1111/j.1365-2117.2009.00431.x]
22. [22] Whitechurch Hubert et al. "Evidence for Paleocene–Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: implications for regional geodynamics and obduction", Lithos 182 (2013) 11-32.
23. [23] Ali S.A., Buckman S., Aswad K., Jones B., Ismail S., Nutman A., "Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the Kurdistan Region of the Iraqi Zagros suture zone: A missing link in the paleogeography of the closing Neotethys Ocean", Lithosphere 4 (2012) 395-410. [DOI:10.1130/L207.1]
24. [24] Moghadam H.S., Stern R.J. "Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites", Journal of Asian Earth Sciences 100 (2015) 31-59. [DOI:10.1016/j.jseaes.2014.12.016]
25. [25] Amini S., Moradpour N., Zareii Sahamieh R., "Petrography, geochemistry and petrology of the South Sahneh Ophiolite Complex (NE Kermanshah)", (in Farsi). Iranian Journal of Crystallography and mineralogy 13 (2007) 225-246.
26. [26] Mousavi S.A., Aliani F., Maanijou M., Sepahi A.A., "Petrography and geochemistry of pillow lavas and related mafic, intermediate and felsic rocks in ophiolitic sequence of Sahneh-Harsin (north east of Kermanshah)", (in Farsi). Iranian Journal of Crystallography and mineralogy 21 (2013) 253-266.
27. [27] Torkian A., Daraeezadeh Z., Aliani F., Noghreyan M., "Application of geochemical data for determining tectonic setting of the diabasic dykes in the Kermanshah ophiolite; Sahneh-Harsin area", (in Farsi). Iranian Journal of Crystallography and mineralogy 21 (2013) 331-342.
28. [28] Zareii Sahamieh R., Moradpour A. "Geochemistry and petrology of the Harsin-Sahneh ophiolitic complex (NE Kermanshah-West of Iran): Implication for the tectonic of Southern Neo-Tethys", (in Farsi). Iranian Journal of Crystallography and mineralogy 23 (2015) 331-344.
29. [29] Sudi Ajirlu M, Hajialioghli R, Moazzen M., "Mineral chemistry and Tectonic setting of diabasic dykes of Kamyaran ophiolite complex, Western Iran", (in Farsi). Iranian Journal of Crystallography and mineralogy 25 (2017) 609-618. [DOI:10.18869/acadpub.ijcm.25.3.609]
30. [30] Wells A.J., "The crush zone of the Iranian Zagros mountains, and its implications", Geological magazine 106 (1969) 385-394. [DOI:10.1017/S0016756800058787]
31. [31] Allahyari K., Saccani E., Rahimzadeh B., Zeda O., "Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran", Journal of Asian Earth Sciences 79 (2014) 312–328. [DOI:10.1016/j.jseaes.2013.10.005]
32. [32] Sabzehei M., Gourabjiri A., Eslamdoust F., "Geological map of Paweh and West Paweh 1/100000 scale", Geological Survey of Iran, Tehran (in Persian) (2010).
33. [33] Kelemen P.B., Hanghoj K., Greene AR., "One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust", In: Treatise on Geochemistry. second edn. Elsevier 4 (2014) 749-805. [DOI:10.1016/B978-0-08-095975-7.00323-5]
34. [34] Staudigel H., "Chemical fluxes from hydrothermal alteration of the oceanic crust", In: Treatise on Geochemistry. second edn. Elsevier 4 (2014) 583-606. [DOI:10.1016/B978-0-08-095975-7.00318-1]
35. [35] Hart S.R., "K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts", Earth and Planetary Science Letters 6 (1969) 295-303. [DOI:10.1016/0012-821X(69)90171-X]
36. [36] Humphris S.E., Thompson C., "Trace element mobility during hydrothermal of oceanic basalts", Geochimica et Cosmochimica Acta 42 (1978) 127-136. [DOI:10.1016/0016-7037(78)90222-3]
37. [37] Nicollet C., Andriambololona D.R., "Distribution of transition elements in crustal metabasic igneous rocks", Chemical Geology 28 (1980) 79-90. [DOI:10.1016/0009-2541(80)90037-6]
38. [38] Zhang G.L., Smith-Duque C., "Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific", Geochemistry Geophysics Geosystems 15 (2014) 3066-3080. [DOI:10.1002/2013GC005141]
39. [39] Bach W., Alt J.C., Niu Y. S., Humphris E., Erzinger J., Dick H.J.B., "The geochemical consequences of late stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735 (Leg 176)", Geochim. Cosmochim. Acta 65 (2001) 3267-3287. [DOI:10.1016/S0016-7037(01)00677-9]
40. [40] Paul H.J., Gillis K. M., Coggon R. M., Teagle D.A.H., "ODP Site 1224: A missing link in the investigation of seafloor weathering", Geochemistry Geophysics Geosystems 7 (2006) Paper number Q02003.
41. [41] Teagle D.A.H., Alt J.C., "Hydrothermal Alteration of Basalts beneath the Bent Hill Massive Sulfide Deposit, Middle Valley, Juan de Fuca Ridge", Economic Geology 99 (2004) 561-584. [DOI:10.2113/gsecongeo.99.3.561]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb