Volume 26, Issue 2 (7-2018)                   www.ijcm.ir 2018, 26(2): 505-516 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

The effect of copper nano-cluster as sublayer on optical and crystalline properties of titanium dioxide layers. www.ijcm.ir 2018; 26 (2) :505-516
URL: http://ijcm.ir/article-1-1114-en.html
Abstract:   (2920 Views)
Two 10 and 20nm samples of Cu nano-cluster were grown on quartz substrates with a thickness of by electron beam deposition method. Nanolayers of titanium dioxide with a thickness of 300 nm were deposited on these Cu nano-cluster layers. For comparison، a layer of titanium dioxide with a thickness of 300 nm was also coated on quartz substrate. All coatings were conducted using electron-beam physical vapor deposition. The effect of Cu nano- cluster thickness on the surface morphology، grain size، grain boundaries، crystalline structure and phases, and optical properties of titanium dioxide layers were studied. The Field Emission Scanning Electron Microscope (FESEM) was used to analyze the surface morphology of prepared layers. Moreover, the crystalline structure of layers and phase transitions on heat treatment were studied using X-Ray Diffraction (XRD). The UV-Visible spectroscopy was used to analyze of the absorption and transmission spectra of titanium dioxide layers. Presence of Cu nano-cluster layers as sublayer increases surface roughness of the obtained TiO2 layers and facilitates the phase transformation TiO2 from anatase to rutile. Furthermore, presence of Cu nano-cluster sublayer decreases TiO2 band gap energy for visible light absorption.
Full-Text [PDF 123 kb]   (805 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Fujishima A., Zhang X., Tryk D.A., "TiO2 photocatalysis and related surface phenomena", Surface Science Reports 63 (2008) 515-582. [DOI:10.1016/j.surfrep.2008.10.001]
2. [2] Hashimoto K., Irie H., Fujishima A., "TiO2 photocatalysis: a historical overview and future prospects", Japanese journal of applied physics 44 (2005) 8269. [DOI:10.1143/JJAP.44.8269]
3. [3] Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., "Environmental applications of semiconductor photocatalysis", Chemical reviews 95 (1995) 69-96. [DOI:10.1021/cr00033a004]
4. [4] Khakpoor A.A., Borjian R., Hoseinzade M., "Optical Properties Improvement TiO2 Thin Films with Adding the Au, Ag or Cu Nanoparticles", Int. Mater. Phys. J. 1 (2013) 8-13.
5. [5] Kavei G., Ahmadi K., Kavei A., "Self cleaning on photocatalyst basis of nano-crystalline TiO2 thin film prepared by spray pyrolysis", Transactions of the Indian Ceramic Society 71 (2012) 31-38. [DOI:10.1080/0371750X.2012.689509]
6. [6] Nakaruk A., Kavei G., Sorrell C.C., "Synthesis of mixed-phase titania films by low-temperature ultrasonic spray pyrolysis", Materials Letters 64 (2010) 1365-1368. [DOI:10.1016/j.matlet.2010.03.016]
7. [7] Gao Y., Masuda Y., Seo W.-S., Ohta H., Koumoto K., "TiO 2 nanoparticles prepared using an aqueous peroxotitanate solution", Ceramics International 30 (2004) 1365-1368. [DOI:10.1016/j.ceramint.2003.12.105]
8. [8] Byrne J.A., Fernandez-Ibanez P.A., Dunlop P.S.M., Alrousan D., Hamilton J.W.J., "Photocatalytic enhancement for solar disinfection of water: a review", International Journal of Photoenergy 2011 (2011). [DOI:10.1155/2011/798051]
9. [9] Zaleska A., "Doped-TiO2: a review", Recent Patents on Engineering 2 (2008) 157-164. [DOI:10.2174/187221208786306289]
10. [10] Lee Y.C., Hong Y.P., Lee H.Y., Kim H., Jung Y.J., Ko K.H., Jung H.S., Hong K.S., "Photocatalysis and hydrophilicity of doped TiO 2 thin films", Journal of colloid and interface science 267 (2003) 127-131. [DOI:10.1016/S0021-9797(03)00603-9]
11. [11] Domaradzki J., Kaczmarek D., Prociow E.L., Borkowska A., Berlicki T., Sieradzka K., "Optical and electrical properties of TiO2 doped with Tb and Pd", Materials Science Poland 26 (2008) 143-147.
12. [12] Bensouici F., Bououdina M., Dakhel A.A., Tala-Ighil R., Tounane M., Iratni A., Souier T., Liu S., Cai W., "Optical, structural and photocatalysis properties of Cu-doped TiO 2 thin films", Applied Surface Science 395 (2017) 110-116. [DOI:10.1016/j.apsusc.2016.07.034]
13. [13] Pongwan P., Wetchakun K., Phanichphant S., Wetchakun N., "Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles", Research on Chemical Intermediates 42 (2016) 2815-2830. [DOI:10.1007/s11164-015-2179-y]
14. [14] Colon G., Maicu M., Hidalgo M.C.s., Navio J.A., "Cu-doped TiO 2 systems with improved photocatalytic activity", Applied Catalysis B: Environmental 67 (2006) 41-51. [DOI:10.1016/j.apcatb.2006.03.019]
15. [15] Ganesh I., Kumar P.P., Annapoorna I., Sumliner J.M., Ramakrishna M., Hebalkar N.Y., Padmanabham G., Sundararajan G., "Preparation and characterization of Cu-doped TiO 2 materials for electrochemical, photoelectrochemical, and photocatalytic applications", Applied Surface Science 293 (2014) 229-247. [DOI:10.1016/j.apsusc.2013.12.140]
16. [16] Karunakaran C., Abiramasundari G., Gomathisankar P., Manikandan G., Anandi V., "Cu-doped TiO 2 nanoparticles for photocatalytic disinfection of bacteria under visible light", Journal of colloid and interface science 352 (2010) 68-74. [DOI:10.1016/j.jcis.2010.08.012]
17. [17] Tryba B., Orlikowski J., Wróbel R.J., Przepiórski J., Morawski A.W., "Preparation and Characterization of rutile-type TiO2 doped with Cu", Journal of Materials Engineering and Performance 24 (2015) 1243-1252. [DOI:10.1007/s11665-015-1405-5]
18. [18] Biyoghe Bi Ndong L., Ibondou M.P., Gu X., Lu S., Qiu Z., Sui Q., Mbadinga S.M., "Enhanced photocatalytic activity of TiO2 nanosheets by doping with Cu for chlorinated solvent pollutants degradation", Industrial & Engineering Chemistry Research 53 (2014) 1368-1376. [DOI:10.1021/ie403405z]
19. [19] Tsai C.-Y., Hsi H.-C., Kuo T.-H., Chang Y.-M., Liou J.-H., "Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal", Aerosol and Air Quality Research 13 (2013) 639-648. [DOI:10.4209/aaqr.2012.07.0196]
20. [20] Gondal M.A., Rashid S.G., Dastageer M.A., Zubair S.M., Ali M.A., Lienhard J.H., McKinley G.H., Varanasi K.K., "Sol–Gel Synthesis of $hbox {Au/Cu-TiO} _ {2} $ Nanocomposite and Their Morphological and Optical Properties", IEEE Photonics Journal 5 (2013) 2201908-2201908. [DOI:10.1109/JPHOT.2013.2262674]
21. [21] Zabihi F., Ahmadian-Yazdi M.R., Eslamian M., "Photocatalytic graphene-TiO2 thin films fabricated by low-temperature ultrasonic vibration-assisted spin and spray coating in a sol-gel process", Catalysts 7 (2017).
22. [22] Essalhi Z., Hartiti B., Lfakir A., Mari B., Thevenin P., "Optoelectronics properties of TiO2:Cu thin films obtained by sol gel method", Optical and Quantum Electronics 49 (2017).
23. [23] Krupski K., Sanchez A.M., Krupski A., McConville C.F., "Optimisation of anatase TiO2 thin film growth on LaAlO3(0 0 1) using pulsed laser deposition", Applied Surface Science 388 (2016) 684-690. [DOI:10.1016/j.apsusc.2016.02.214]
24. [24] Ennaceri H., Boujnah M., Taleb A., Khaldoun A., Sáez-Araoz R., Ennaoui A., El Kenz A., Benyoussef A., "Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study", International Journal of Hydrogen Energy 42 (2017) 19467-19480. [DOI:10.1016/j.ijhydene.2017.06.015]
25. [25] Juma A., Oja Acik I., Oluwabi A.T., Mere A., Mikli V., Danilson M., Krunks M., "Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis", Applied Surface Science 387 (2016) 539-545. [DOI:10.1016/j.apsusc.2016.06.093]
26. [26] Dongale T.D., Shinde S.S., Kamat R.K., Rajpure K.Y., "Nanostructured TiO2 thin film memristor using hydrothermal process", Journal of Alloys and Compounds 593 (2014) 267-270. [DOI:10.1016/j.jallcom.2014.01.093]
27. [27] Singh J., Khan S.A., Shah J., Kotnala R.K., Mohapatra S., "Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications", Applied Surface Science 422 (2017) 953-961. [DOI:10.1016/j.apsusc.2017.06.068]
28. [28] Rasoulnezhad H., Kavei G., Ahmadi K., Rahimipour M.R., "Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film", Applied Surface Science 408 (2017) 1-10. [DOI:10.1016/j.apsusc.2017.03.014]
29. [29] Taherniya A., Raoufi D., "The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method", Semiconductor Science and Technology 31 (2016).
30. [30] Herminghaus S., "Roughness-induced non-wetting", EPL (Europhysics Letters) 52 (2000) 165. [DOI:10.1209/epl/i2000-00418-8]
31. [31] Irie H., Ping T.S., Shibata T., Hashimoto K., "Reversible control of wettability of a TiO2 surface by introducing surface roughness", Electrochemical and Solid-State Letters 8 (2005) D23-D25. [DOI:10.1149/1.1979455]
32. [32] Nolan N.T., Seery M.K., Pillai S.C., "Spectroscopic investigation of the anatase-to-rutile transformation of sol− gel-synthesized TiO2 photocatalysts", The Journal of Physical Chemistry C 113 (2009) 16151-16157. [DOI:10.1021/jp904358g]
33. [33] Ye J., Liu W., Cai J., Chen S., Zhao X., Zhou H., Qi L., "Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior", Journal of the American Chemical Society 133 (2010) 933-940. [DOI:10.1021/ja108205q]
34. [34] Gribb A.A., Banfield J.F., "Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2", American Mineralogist 82 (1997) 717-728. [DOI:10.2138/am-1997-7-809]
35. [35] Fagan R., Synnott D.W., McCormack D.E., Pillai S.C., "An effective method for the preparation of high temperature stable anatase TiO 2 photocatalysts", Applied Surface Science 371 (2016) 447-452. [DOI:10.1016/j.apsusc.2016.02.235]
36. [36] Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M., Cab C., de Coss R.d., Oskam G., "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile", Nanotechnology 19 (2008) 145605. [DOI:10.1088/0957-4484/19/14/145605]
37. [37] Won D.-J., Wang C.-H., Jang H.-K., Choi D.-J., "Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties", Applied Physics A: Materials Science & Processing 73 (2001) 595-600. [DOI:10.1007/s003390100804]
38. [38] Tauc J., "Absorption edge and internal electric fields in amorphous semiconductors", Materials Research Bulletin 5 (1970) 721-729. [DOI:10.1016/0025-5408(70)90112-1]
39. [39] Li S., Lin Y.-H., Zhang B.-P., Wang Y., Nan C.-W., "Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors", The Journal of Physical Chemistry C 114 (2010) 2903-2908. [DOI:10.1021/jp910401u]
40. [40] Wu G., Nishikawa T., Ohtani B., Chen A., "Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response", Chemistry of Materials 19 (2007) 4530-4537. [DOI:10.1021/cm071244m]
41. [41] Chan G.H., Zhao J., Hicks E.M., Schatz G.C., Van Duyne R.P., "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography", Nano Letters 7 (2007) 1947-1952. [DOI:10.1021/nl070648a]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb