کانی شناسی و زمین شیمیایی رس بنتونیت و ایگنیمیریت در تشکاب، جنوب خاور خور و بیابانک، استان اصفهان

شیرین فتحی*، علی اصغر کلاغری†، علی عابدی‌نیا§، سید حسن طباطبایی ‡

1- گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تربیت مدرس، کد پستی 16315-1391
2- گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، کد پستی 57163
3- دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اکدیپستی، کد پستی 88137

(دریافت مقاله: 1389/03/17، پذیرش نهایی: 1389/04/17)

چکیده: ذخایر رس بنتونیت تشکاب در فاصله ۲۵ کیلومتری جنوب شرقی شهرستان خور و بیابانک، در استان اصفهان واقع است. این ذخایر نتیجه دگرگونی ایگنیمیریت‌ها به سن آوون زیرین است. بررسی‌های کانی شناسی نشان می‌دهد که مونتیورنیت، سایوپنت، کوارتز، ناتروپشتین، بیدلیت، میکروکلین، آوپتیت، ایبلیت، اپتیت، کلسیت، فارنیت و دورموئیت همراهی یافته‌اند. بررسی‌های نسب‌اندازه‌گیری نشان می‌دهد که حجم‌دهی و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌شوند و ترکیب کانی‌های نهایی مرداد مطالعه در رده اسکلتی‌های دوهشته‌چهی طبق‌بندی می‌ش

واژه‌های کلیدی: کانی شناسی؛ رس بنتونیتی؛ ایگنیمیریت؛ تعریض، آنالیز، میراث زمین‌شناسی، ایرانی‌ها

مقدمه

کوه مونتونگ یکی از قله‌های مرتفع رشته کوه تشکاب خور، در استان اصفهان است. ذخایر رس بنتونیتی تعدادی از جمله ذخایر مهرجان، تشکاب و سنگ‌های مرخور در این ناحیه از ایران می‌باشد. دگرگونی‌های ایگنیمیریت‌ها و سنگ‌های آن‌شسانی این‌ها ایجاد شده‌است. بررسی‌های که نتایجی بر روی ذخایر بنتونیتی خور و بیابانک انجام شده این، نشان می‌دهد که توسعه این

shfatahi1982@yahoo.com
مشارکت‌های اولیه سنتی و روش‌های پژوهش در دسترسی به علوم دینی

مقدمه

پیامدهایی از مطالعات علمی انجام شده در زمینه بازی ویژگی‌های آن و یکی از شناخته‌برداری‌های منجر به پژوهش در زمینه این بازی‌ها و افرادی که با آن‌ها فعالیت می‌کنند، درک می‌شود که برای بهترین تحلیل و تفسیر این بازی‌ها، باید به بررسی مدل‌هایی از آن‌ها و مواردی که با آن‌ها مرتبط هستند، توجه داشته شود.

بحث و بررسی

بحث و بررسی

آماری

نتایج تحقیق

در این تحقیق، مدل‌های ایجاد شده در زمینه بازی ویژگی‌های آن و یکی از شناخته‌برداری‌های منجر به پژوهش در زمینه این بازی‌ها و افرادی که با آن‌ها فعالیت می‌کنند، درک می‌شود که برای بهترین تحلیل و تفسیر این بازی‌ها، باید به بررسی مدل‌هایی از آن‌ها و مواردی که با آن‌ها مرتبط هستند، توجه داشته شود.

بحث و بررسی

بحث و بررسی

نتایج تحقیق

در این تحقیق، مدل‌های ایجاد شده در زمینه بازی ویژگی‌های آن و یکی از شناخته‌برداری‌های منجر به پژوهش در زمینه این بازی‌ها و افرادی که با آن‌ها فعالیت می‌کنند، درک می‌شود که برای بهترین تحلیل و تفسیر این بازی‌ها، باید به بررسی مدل‌هایی از آن‌ها و مواردی که با آن‌ها مرتبط هستند، توجه داشته شود.
جدول 1 مقدار عناصر اصلی، فرعی، جزئی، جانبی، سیلیسی، و ILO در نمونه‌های مردم پروری در ترکیب اکسی‌های S-1، S-2، S-3، S-4 میلی‌میکرو‌کیلوگرم به / N.D. تعیین نشده.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>S-1 (mg/kg)</th>
<th>S-2 (mg/kg)</th>
<th>S-3 (mg/kg)</th>
<th>S-4 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (%wt)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>CaO</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.4</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.1</td>
<td>5.2</td>
<td>5.3</td>
<td>5.4</td>
</tr>
<tr>
<td>MgO</td>
<td>6.1</td>
<td>6.2</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.1</td>
<td>7.2</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td>TiO₂</td>
<td>8.1</td>
<td>8.2</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>MnO</td>
<td>9.1</td>
<td>9.2</td>
<td>9.3</td>
<td>9.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>10.1</td>
<td>10.2</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>11.1</td>
<td>11.2</td>
<td>11.3</td>
<td>11.4</td>
</tr>
<tr>
<td>L₂O₃</td>
<td>12.1</td>
<td>12.2</td>
<td>12.3</td>
<td>12.4</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>13.1</td>
<td>13.2</td>
<td>13.3</td>
<td>13.4</td>
</tr>
<tr>
<td>Th</td>
<td>14.1</td>
<td>14.2</td>
<td>14.3</td>
<td>14.4</td>
</tr>
<tr>
<td>Ba</td>
<td>15.1</td>
<td>15.2</td>
<td>15.3</td>
<td>15.4</td>
</tr>
<tr>
<td>Hf</td>
<td>16.1</td>
<td>16.2</td>
<td>16.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Co</td>
<td>17.1</td>
<td>17.2</td>
<td>17.3</td>
<td>17.4</td>
</tr>
<tr>
<td>Zn</td>
<td>18.1</td>
<td>18.2</td>
<td>18.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Nb</td>
<td>19.1</td>
<td>19.2</td>
<td>19.3</td>
<td>19.4</td>
</tr>
<tr>
<td>Cs</td>
<td>20.1</td>
<td>20.2</td>
<td>20.3</td>
<td>20.4</td>
</tr>
<tr>
<td>Rb</td>
<td>21.1</td>
<td>21.2</td>
<td>21.3</td>
<td>21.4</td>
</tr>
<tr>
<td>V</td>
<td>22.1</td>
<td>22.2</td>
<td>22.3</td>
<td>22.4</td>
</tr>
<tr>
<td>Y</td>
<td>23.1</td>
<td>23.2</td>
<td>23.3</td>
<td>23.4</td>
</tr>
<tr>
<td>Pb</td>
<td>24.1</td>
<td>24.2</td>
<td>24.3</td>
<td>24.4</td>
</tr>
<tr>
<td>Zr</td>
<td>25.1</td>
<td>25.2</td>
<td>25.3</td>
<td>25.4</td>
</tr>
<tr>
<td>Ni</td>
<td>26.1</td>
<td>26.2</td>
<td>26.3</td>
<td>26.4</td>
</tr>
<tr>
<td>Sr</td>
<td>27.1</td>
<td>27.2</td>
<td>27.3</td>
<td>27.4</td>
</tr>
<tr>
<td>Ta</td>
<td>28.1</td>
<td>28.2</td>
<td>28.3</td>
<td>28.4</td>
</tr>
<tr>
<td>Cu</td>
<td>29.1</td>
<td>29.2</td>
<td>29.3</td>
<td>29.4</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>30.1</td>
<td>30.2</td>
<td>30.3</td>
<td>30.4</td>
</tr>
<tr>
<td>Ce</td>
<td>31.1</td>
<td>31.2</td>
<td>31.3</td>
<td>31.4</td>
</tr>
<tr>
<td>Pr</td>
<td>32.1</td>
<td>32.2</td>
<td>32.3</td>
<td>32.4</td>
</tr>
<tr>
<td>Nd</td>
<td>33.1</td>
<td>33.2</td>
<td>33.3</td>
<td>33.4</td>
</tr>
<tr>
<td>Sm</td>
<td>34.1</td>
<td>34.2</td>
<td>34.3</td>
<td>34.4</td>
</tr>
<tr>
<td>Eu</td>
<td>35.1</td>
<td>35.2</td>
<td>35.3</td>
<td>35.4</td>
</tr>
<tr>
<td>Gd</td>
<td>36.1</td>
<td>36.2</td>
<td>36.3</td>
<td>36.4</td>
</tr>
<tr>
<td>Tb</td>
<td>37.1</td>
<td>37.2</td>
<td>37.3</td>
<td>37.4</td>
</tr>
<tr>
<td>Dy</td>
<td>38.1</td>
<td>38.2</td>
<td>38.3</td>
<td>38.4</td>
</tr>
<tr>
<td>Ho</td>
<td>39.1</td>
<td>39.2</td>
<td>39.3</td>
<td>39.4</td>
</tr>
<tr>
<td>Er</td>
<td>40.1</td>
<td>40.2</td>
<td>40.3</td>
<td>40.4</td>
</tr>
<tr>
<td>Tm</td>
<td>41.1</td>
<td>41.2</td>
<td>41.3</td>
<td>41.4</td>
</tr>
<tr>
<td>Yb</td>
<td>42.1</td>
<td>42.2</td>
<td>42.3</td>
<td>42.4</td>
</tr>
<tr>
<td>Lu</td>
<td>43.1</td>
<td>43.2</td>
<td>43.3</td>
<td>43.4</td>
</tr>
</tbody>
</table>

N.D. = نداشتن قیمتی.

بررسی‌های زمین‌شناسی نشان می‌دهد که یک نیروی عمود بر امتداد دخیره رس بنتونیتی (با ضخامت تقریبی 12 متر) از سطح به عمق شامل این‌گونه‌های حاوی رگ‌های سلیسی و رس‌های بنتونیتی به رنگ‌های سبز، زرد، سفید، زرد، سبز-زرد، و سفید‌ایل به‌ناک‌تر درست (شکل 13)، تغییرات ساختار از مطبق تا نیروهای جابجا کرده و عدی‌های رس بنتونیتی در نتیجه نیروهای زمین‌شناسی، تغییرات لمس از خاکی و صاوبنی تا زبر، تغییرات سختی از

سست‌های کسخ‌نشین و هم‌گیری‌های بارز زمین‌شناسی منطقه
تشکیل هستند. با توجه به شواهد صحرایی رس‌های بنتونیتی
این منطقه متحمل فشارهای زمین‌ساختی شدیدی شده و
برخی به طور مکرر در اثر شویی کرده‌اند. برخی از
سگلهای پیش‌آمدها این خطر به دلیل نفوذ محلولهای
گرمایی به دویدن درز و شکاف‌ها، دچار دگرگونی پلیبتیک شده و
به کانی‌های گرده‌کاریت، ایبودت و آلیکت تبدیل شده‌اند. به
رنگ سبز در آمده‌اند. حضور پایبندی از این‌گونه‌ها در قاعده

 DOI: 10.29252/ijcm.25.4.727
Downloaded from ijcm.ir on 2022-02-20
شکل ۳ پ. کلسولونی به صورت پرکندگی فضاهای خالی در ایگنیمیریت‌ها دیده می‌شود (شکل ۲ پ). همچنین، شیشه‌های آنفوشانی به صورت جهت گرفته (فرآیند کمتر نسبت به کانی‌های نظیر کوارتز، پلاژیوکلاز، زنولیت، و کلسولونی) در مقاطع مشاهده می‌شوند که خود توسط کلسیت و کانی‌های رسی جانشین شده‌اند (شکل ۲ پ). خردسگنگ‌ها به فراوانی کمتر نسبت به درشت‌ترند و زمینه شیشه‌ای به ترتیب فراوانی از کانی‌های پلاژیوکلاز، کوارتز، و شیشه تشکیل شده‌اند (شکل ۲ پ). بلورهای کوارتز و پلاژیوکلاز‌ها در بخش‌هایی مختلف جهت گرفته و کم‌رنگ‌های زمینه هر دوی از ریزبلورهای شیشه‌ای پلاژیوکلاز و شیشه آنفوشانی تشکیل شده است که به طور قابل مشاهده توسط کلسیت و رسی جانشینی شده‌اند (شکل ۲ پ). در پیشری موارد، بلورهای پلاژیوکلاز از مرکز توسط کلسیت جانشین‌شده‌اند (شکل ۲ پ). پایه‌های نیز به حفره‌های کروی خود، در برخی از مقاطع قابل تشخیص هستند (شکل ۲ پ).

جدول ۱

| شاخص‌های رس پنتونیتی و وجود مرزهای کامل تدریجی بین رس‌های پنتونیتی و ایگنیمیریت‌ها نشان می‌دهد که این ذخیره نتیجه دگرگونی این سنگ‌ها است. افزون بر این، آثار بررسی‌گر در درز، شکاف، و حفره‌ها موجود در سنگ‌های آنفوشانی و ایگنیمیریت‌ها توسط آگات، زنولیت، زسپیمروتوس، و کلسیت‌های ریزبلور تا درشت‌تر به خوبی قابل مشاهده است.

مطالعات کانی‌شناسی

بررسی‌های میکروسکوپیکی نشان می‌دهد که ایگنیمیریت‌ها شامل درشت‌تر بلورهای از پلاژیوکلاز، کوارتز، زنولیت، و کلسولونی (به ترتیب فراوانی) در سنگ‌های آنفوشانی جهت یافته با ترکب آندزیتی و شیشه‌های آنفوشانی همراه با خردسگنگ‌ها است. پایین‌ترین ناحیه (شکل ۲ اف) تا ج. در بالاترین مقاطع مورد بررسی زنولیت به صورت پرکندگی فضاهایی خالی و به صورت رنگ از کانی‌های مرکز در حفره‌ها قابل مشاهده است. (شکل ۳ اف). کوارتز در مقاطع به صورت شکل‌دار نیمه شکل‌دار و با شکاف‌های موجی، دیده می‌شود. پلاژیوکلاز به صورت قطع‌های سالم و شکسته در متن سنگ پراکنده است.

![Stratigraphic column (across traverse- WE Khur)](image)

Legend

- Upper red Formation (Miocene)
- Clay, Often sandy, in places gypsahn and Sandstone
- Ignimbrite with silicate vein
- Green bentonite clay
- Yellow bentonite clay
- White-yellow bentonite clay
- Grayish white bentonite clay
- Darreh angir Formation (Lower Eocene):Shale, Limestone, Calcareite and Conglomerate at the base
- Sharp boundary
- Transitional boundary

شکل ۲ است. ناحیه شناسی نیم‌خور مورد بررسی در ذخیره رسول پنتونیتی نشان‌دهنده‌ها که روی آن محل نمونه‌های پرداخته شده جهت انجام بررسی‌های زمین‌شناسی با دایره‌های توخالی نشان داده شده‌اند.
شکل ۳ الف: رشد زلوئیت‌ها در فضاهای خالی موجود در ایگنومریت‌ها از سمت دیوته به سمت مرکز حفره (XPL) (B) پلاژیوکلاز: شکل‌دار به صورت فوتوکست. کوارتز نیمه شکل‌دار و کلسیدنی در زمینه‌های از شیشه انششانی که خط توسط کلسیدنی و کاسنی‌های رسی جاتینش شده است. (XPL) (B) حضور شیشه‌های انششانی جهت یافته درون ایگنومریت‌ها (XPL) (B). حضور خردسدنگهای انششانی با حالی جهت یافته درون ایگنومریت‌ها که مشکل از پلاژیوکلاز، کوارتز، بی‌صفر وزنی، بزرگ‌بلور و ریزکش بلور به همراه شیشه‌های انششانی در زمینه‌های بزرگ‌بلوری به سوزنی‌های کاسنی‌های رسی جاتینشانی شده است (XPL) (B) جای پلاژیوکلاز و (C) پایه‌ای با ساختار خرفاوری که در بخش‌های شیشه‌ای به سمت توسط کاسنی‌های رسی جاتینشانی شده است. شیشه‌های Sh.Gl = کلسیدنی، Ca = کلسیدنی، Pd = کاسنی، Ca = کاسنی، Qtz = کوارتز، Plg = پلاژیوکلاز، زلوئیت = زلوئیت، Ca(OH)۲ = علامت اختصاصی سایر فرشه‌های باورنده از (XPL) (B). انششانی. علائم اختصاصی کاسنی‌های از مرز و گرفته‌های [11] شده‌اند.

یک نقطه از کلرید‌ها و یک نقطه از زلوئیت‌ها صورت گرفته است (شکل‌های ۵الف، ب، و پ). در این بررسی، فرمول ساختار اسکمتی‌ها بر اساس ۱١ اکسیدان محاسبه گردیده (شکل ۵الف). بر اساس این محاسبه، مقدار دیده در ساختار کاسنی‌های رسی بیش از مقدار کلسیدنی آنها است و این نظر، رس‌های بسته‌برنونی منطقه تنشکش را می‌توان در شمار رس‌های بسته‌برنونی یافته نویسی آموزش قرار داد [۱۲]. بر اساس نتایج بدست‌آمده، میانگین تركیب شیمیایی اسکمتی‌ها به صورت

\[
\text{Ca}_{0.07}\text{Na}_{0.26}\text{K}_{0.04}\text{Al}_{1.82}\text{Fe}_{0.19}\text{Mg}_{0.28}
\]

محاسبه شد. استفاده از نمونه (Si,3,86 Al,1,44)O,16(OH,2

نتیجه به (۱۲) که بر اساس نسبت Mg\text{SiO,4} + Fe\text{SiO,4}

کاسنی‌های هش‌توده نظیم شده و برای تفکیک کاسنی‌های SEM-EDS
در محدوده بیدلیت-مونتморیلونیت-نانتروریت قرار می‌گیرند.

و در هشته‌ی چرب از سه هشته و جهت استفاده می‌شود. نشان می‌دهد که نمونه‌های رس بینوتینی تنشاب ترکیبی در حد استکتیمات‌های حاوی هست‌وهجه‌ی دارند و می‌توانند در شمار هیچ‌گونه قابل اندازه‌سازی قرار گیرند (شکل ۶). این نمونه‌ها آشکار می‌کند که ترکیب کانی شناسی رس‌های منطقه تنشاب

[شکل ۲: گرافه‌های پرایش پروتو (XRD) در نمونه C-۱، C-۲ و C-۳] (XRD)

[شکل ۵: آنالیز‌های SEM-EDS از رس‌های آلفا] (SEM-EDS)
نمودار نرمکی کانی‌های دوهست و چهارستحولی خانواده اسمنکتیت [12] که بر اساس ان نموده‌ای مورد بررسی در محدوده اسمنکتیت‌های چهارستحولی قرار می‌گیرند.

شکل 6 موضعی نمودرهای رسی منطقه تشکیل در نمودار سه متغیره [12] جهت تفکیک انواع رس‌ها بر اساس کاتیون‌های هسته‌های.

تردد اولیه تجمعات رس

نمودرهای عناصر جزئی گه برای تعیین ترکیب، ماگمای مولد سنگ آدنین به کار می‌رود. می‌توانند برای تعیین خاستگاه و ترکیب سنگ‌های اولیه رسی از این نمودار مورد استفاده قرار گیرند [15]. اضافه‌ی انتخابی از عناصر کمترکی چون Nb، Fe، Cr دارای اهمیتی از این نمودار به‌طور کلی ترجیح‌اند ولی Ti، Y، Zr عناصری در طی دگرگشت سنگ‌های اولیه و تبدیل آنها به ذخایر پترونیت‌های بکمترین مقدار می‌رسانند. با ترسیم پایه‌های وابسته به نمودرهای رس پترونیت و ایگنیمبریت‌ها در
توزیع و تحکم عناصر در رس‌های بنتونیتی امکان‌پذیر نیست. بنابراین، در این پژوهش از نسبت مقدار تمرکز عناصر در رس بنتونیتی نسبت به سنج مولک اینکریمتی استفاده شد.

براساس نتایج بدست آمده، فرآیند دگرسانی (تبدیل) اینکریمتی به رس بنتونیتی در منطقه تنشت از دیدگاه [16] موثریت اینکریمتی و نمونه‌های رس بنتونیتی تشکیل در نمودارهای دو متغیره و [18]

شکل 8

![عکس 1](image1.png)

شکل 8. موقعیت اینکریمتی و نمونه‌های رس بنتونیتی تشکیل در نمودارهای دو متغیره و

شکل 9

![عکس 2](image2.png)

شکل 9. نمودار عکبیته عناصر اصلی، فرعی و جزئی به ناحیه مشکی به اینکریمتی در نمونه‌های رس بنتونیتی و نمونه سیلیسی شده.

شکل 10

![عکس 3](image3.png)

شکل 10. نمودار عکبیته عناصر نادر خاکی به ناحیه مشکی به اینکریمتی در نمونه‌های رس بنتونیتی و نمونه سیلیسی شده.
شگذی لاتانیشیا در نمونه‌های رس یونتئیتی و نمونه سیلیسی به نظر مرسید که نپل سیلیسی موجود در بالای ذخیره در اثر شستشوی سیلیسی حاصل از درکرسی فلدسری و ترسب آن در بالای سیستم ایجاد شده است (شکل 9). در کل، به نظر مرسید که تغییرات شدید در میزان شستشوی و غنی‌شدن عناصر به ویژه عناصر اصلی و قریط توسط و تکامل ذخیره می‌تواند به اخلاق میزان شدت درکرسی مواد خاستگاه و تفاوت در میزان پایداری کانی‌های اولیه در پارک ددرسی مربوط باشد.

عناصر غنی‌شده

عناصر غنی‌شده: Mg, Ca به نظر مرسید به رس‌های یونتئیتی در منطقه تشای است. غنی‌شدن این عنصر بهبود می‌اند برای که در کارکرد عمل می‌کند.

عناصر تغییر کرده: Cu

به نظر مرسید که عناصر غنی‌شده فيلم‌های سیلیسی و Si به وجود آمده‌اند که سیلیسی می‌تواند به رس‌های یونتئیتی نیز به دست آید. در سیلیسی، به ویژه در میزان شدت درکرسی مواد خاستگاه و تفاوت در میزان پایداری کانی‌های اولیه در پارک ددرسی مربوط باشد.

عناصر تغییر کرده

عناصر تغییر کرده: Mg, Ca به نظر مرسید به رس‌های یونتئیتی در منطقه تشای است. غنی‌شدن این عنصر بهبود می‌اند برای که در کارکرد عمل می‌کند.

شکل 1: شکل ایجاد در رس‌های یونتئیتی

شکل 2: شکل ایجاد در رس‌های یونتئیتی

شکل 3: شکل ایجاد در رس‌های یونتئیتی

شکل 4: شکل ایجاد در رس‌های یونتئیتی
مهمترین نتایج حاصل از بررسی کانال شناسی و زمین‌شیمی
دی‌هالسی در بیشتری نشان داده‌ها و پیش‌نگاه‌ها

[3] نظریه، کانال‌های اکثر آگاهانه و زنده‌ها شرق خور و راه‌های آن‌ها با تکامل‌های زمین‌شیمی، زمین‌شناسی ایران (1389) ص: 48-47.

[7] مهروی ر، نقشه‌نگار م، مکی زاده م، پورنفشن‌ریز، "بررسی کانال شناسی و زمین‌شیمی کانال‌های بین‌شیمی ایران، صالح نوزدهم، شهرهای 1396، ص: 140-130.

[8] A ناحیه ه.، کالری، G، طبیعت‌گرایی، "بررسی کانال شناسی و زمین‌شیمی دی‌هالسی در سال 1396، جنوب باختر ناحیه ایران، سال بیست و سوم، ص: 1396، ص: 130-129.

[9] A ناحیه ه.، کالری، G، طبیعت‌گرایی، "بررسی کانال شناسی و زمین‌شیمی دی‌هالسی در سال 1396، جنوب باختر ناحیه ایران، سال بیست و سوم، ص: 1396، ص: 130-129.

[10] برداشت

مرجع

[1] تابع شیمی کانال نشان می‌دهد که راه‌های بین‌شیمیی منطقه نشان از نظر کانال شناسی در حد بیشتری نشان می‌دهد.

[3] تابع شیمی کانال نشان می‌دهد که راه‌های بین‌شیمیی منطقه نشان از نظر کانال شناسی در حد بیشتری نشان می‌دهد.

[6] بررسی ترازکالیوم به عنوان یکی از سایر گرایش‌ها شباهت با داده‌های شناسی ایران (1389) ص: 47-46.

