تأثیر تناوب‌های خشک و مرطوب بر رهاسازی برخی عناسران از کانال بنتونیت در حضور اسیدهای آلی

زینب جناغ، سعید حجتیان

گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید جهانیان اهواز

چکیده: بررسی تاثیر چرخه‌های خشک و مرطوب خاک بر چرخه عناصر غذایی، از جنبه‌های مختلف حاصل خوردن خاک و تغذیه‌گیاه و مسائل زیست محیطی اهمیت است. این پژوهش با هدف بررسی تاثیر دو نوع اسید آلی سیرتیک و اگزالیک بر غلتیت شیمیایی از میلی‌مولار و تناوب‌های مختلف (0، 0.1، 0.3 و 0.5 مولی) خشک و مرطوب شدن بر آزادسازی عناصر سیلیسیم، منزیم و آهن از کانال بنتونیت (آسانتر در نتیجه بین 0.1 و 0.5 میکرون) در قالب طرح کاملاً تصادفی با آرایش فاکتوریل و در سه تکرار انجم شدن تقدیر و بررسی اثرات اسیدهای آلی بر رهاسازی عناسرهای سیلیسیم به روش رنگسنجی در با رابطه با عنصر به قرار گرفتن آهن و منزیم با استفاده از دستگاه جنبشی اتمی اندازه‌گیری شد. نتایج نشان داد مقادیر رهاسازی عنارس به نمود عناصر آلی و تعداد دوره‌های خشک و مرطوب بستگی دارد. از میان اسیدهای آلی مورد بررسی رهاسازی منزیم در نمونه‌های تیمار شده به سید سیرتیک بیش از نمونه‌های تیمار شده با اسید اگزالیک است. حال اگر، رهاسازی سیلیسیم و آهن در نمونه‌های تیمار شده با اسید اگزالیک بیش از اسید سیرتیک است. همچنین نتایج نشان داد که با افزایش تناوب‌های خشک و مرطوب شدن، رهاسازی عنارس از کانال بنتونیت افزایش می‌یابد و در این ارتباط کاهش تناوب‌های خشک و مرطوب در حضور اسیدهای آلی منجر به رهاسازی منجر به عنصر از کانال بنتونیت شده با توجه به نتایج دست ماده، اسیدهای آلی اگزالیک و سیرتیک را به ترتیب می‌توان برای عصاره‌گیری آهن و منزیم از ساختار کانال بنتونیت پیشنهاد کرد.

واژه‌های کلیدی: اسیدهای آلی، اگزالیک، سیرتیک، هواگردی‌های شیمیایی

مقدمه

بنتونیت یک فیلوسیلیت‌ها اومونیوم‌دار از خلوده، استمنت‌ها است. از خواص مهم کانال‌های خلوده استمنت‌ها می‌توان به جانشینی بیونی، خاصیت شکم‌پذیری و انقباض‌پذیری و انقباض‌پذیری بی‌اشتهایی و خاصیت استرای زیاد برای ایزوهی هشته و دوپینی بهره‌برداری سیلیسیم (سیلیسیم) که با سیال اکسیژن یا چهاروجی‌های ماده و خود depot می‌باشد و محدود شده است. شاخص هشته و دوپینی در کانال بنتونیت از کانال‌های آلی و هواگردی‌های آلی اسیدهای آلی و منزیم تشکیل شده‌اند. فاصله میان این با توجه به سیال‌های در کانال و

s.hojati@scu.ac.ir

*تورسند مسئول تلفن: 021-23232200، تلفن: 021-48306279، پست الکترونیکی: 021-23232200

یرانی

[Downloaded from jir.unm.az on 2022-02-17]
ان تغییرات بطور مستقیم و غیر مستقیم بر سبایی الی بر
ویژه‌ی خاک، اعم از هواویدیگی کلیه‌ی، حلالت و قابلیت
دسترسی عناصر تا نیتر می‌گذارد. [3] در کنار کلیه‌ی سیلیکات
عناصر آهن و منگنز به دلیل تغییرات مميری که دارد
به‌طور کلی تاثیر این فرآیند قرار می‌گیرد. بررسی‌ها نشان
داده که در تاثیر این عناصر به دلیل تغییرات بار
ططحی در ان کلیه‌ی مختلف شده و سیلیکات و ویژه‌ی
مارکوسکوپی کلیه‌ی از جمله توانایی آلی‌ها در جذب آل
انقباض و انساس و نیز هواویدیگی کلیه‌ی، دسترسی تغییر
می‌شود. به عبارت دیگر، از تاثیر اکسیسی و احیا در
شبکه مولکولی، با اثر تغییرات شده و شرایط
برای این فرآیند آلی و روش‌کار
در این پژوهش به‌منظور بررسی تاثیر تناوب‌های خشک و
مرطب بر پارادیژ کلیه‌ی بنیوکی و مرطب میزان رهاشی
عناصر در شرایط خشک و حضر از ضرورت استفاده از الی‌ها برای
اندازه‌گیری شکاف‌ها و ترتیب‌های آراشی از این نظر
کاربرد، آرایش در قالب تحقیق واحد، حاصل داده شده.
اکثریت آزمایشگاه‌ها در شرایط استحکام و مطرح
ویژه‌ی سیلیکات، به ترتیب تغییرات شده و شرایط
کیفیتی می‌توان با بهره‌نگارهای گیاهان
رارده و این تغییرات شده و سیلیکات
می‌توان تجزیه و انحلال کلیه‌ی کلیه‌ی مورد بررسی
به‌شتیه و آماده سازی کلیه‌ی مورد بررسی
پیش از استفاده، کلیه‌ی بنیوکی، نخست با استفاده از آسی خرد
شده و سپس با الکهای ۲۵ و ۵۰ میکرون داده شدند.
لازم به توضیح است که در آزمایش و گونه‌ی که
کدردی نمونه‌ها با استفاده از دستگاه ضرورت استفاده از دیگر
جدا کرده و تغییرات تهیه شده از آن مرحله در بررسی‌های
بعدی برای هدف استفاده قرار گرفته است. همچنین، به‌منظور
تجزیه‌گیری کلیه‌ی، به‌منظور لی‌ها به‌منظور
کلایه‌ی تمامی و حذف اندازه‌گیری لی‌ها به‌منظور
تماوز و تقابل کلیه‌ی با الکسیم اضافه شده، برای این کار از
محصول کلایه‌کاسه‌ی ۵ میلی‌متر استفاده شد. در پایان برای جدا
کردن الکسیم اضافی از نمونه، به انها آب مقطع اضافه و در به
مدت ۱۰ دقیقه با شدت ۲۰۰۰ دور در دقیقه بروند گیری
شدند. این فرآیند تا خارج ساختن کلیه کلیه و ناب‌شدن
ورشکسکوکسکی در محصول ناهیده ادامه پایت [۴].

نتایج عمیقی مورد استفاده در این پژوهش
جدول ۱ به‌منظور XRF و با استفاده از کاغذ (Pioneer S1، از فرآیند کاغذی داشته باشد یک تکنیک (تکنیک (RFA و
انجام شد. همچنین با مهندس و ساختار کلیه و وسایل و ساختار کلیه برای دریافت خلاص
کلیه‌ی مورد بررسی، نمونه‌های نهایی این کلیه به وسیله
حالت خوشه‌ای و اولیه، این کلیه به وسیله
کلاژن‌های با نوع و مقیاس لی‌ها ارائه می‌شود. با

توجه:

مجله حفظ آزمایشی

از مبانی اسیدهای آلی گزینش شده در خاک و سیستمیک و اکلاریک به مرحله مناسبتر نسبت به اسیدهای دیگر در خاک وجود دارند و این امر رو به آیندی بررسی از این اسیدهای آزمایش سه به آسان و سپس در این پژوهش شکل ایجادیت، تشکیل‌نگاری و سپس اکلاریک به صورت خلاصه از شرکت مربی تهیه شده، برای تهیه محلول‌های آزمایشی، نخست محلول مادر آبی اسید سیستریک و اکلاریک به غلظت 1 مولار تهیه و سپس با استفاده از آن، غلظت مورد نظر 10 میلی‌مولار از اسیدهای آلی ساخته شد. برای حجم و سیستم نمونه‌ها تیمار به این سیستریک و اکلاریک، از بافر pH 4 مولار است که با تأثیر این در اجرای آزمایش طبیعی تیکن [8] همیشه لازم به توضیح است که به منظور جلوگیری از تغییرات مکریوی و تشیع اسیدهای آلی قطعه کلروفون به محلول‌های آزمایشی اضافه شد.

تهیه محلول‌های آزمایشی

برای ایجاد شرایط مربوط به رعایت نسبت 1:10 کلی و آب دی‌پی‌نوئزه 5 گرم کانی و 50 میلی‌لیتر آب در یونیزه در طور پلاستیک مخلوط شدند و رطوبت نمونه‌ها به شدت شور سپس ماده تغییری حالت به مدت یک شب روز در داخل اکتیورات در دمای 25 درجه سانتی‌گراد تا شش روز در دمای 30 درجه سانتی‌گراد. برای تهیه ماده در مرحله بعدی تیمار که به تهیه ماده در مرحله بعدی تیماری به روشی از هرکازه از محلول‌های اسیدی به غلظت 0.1 مولار در نمایشگاه‌ها با دو کیلوگرم قرار گرفت.
جدول 1 نتایج تجزیه عضیری بنتونیت مورد بررسی بر حسب درصد به روش فلوروسکوپی پرتو ایکس.

<table>
<thead>
<tr>
<th>عناصر</th>
<th>کل</th>
<th>LOI</th>
<th>SO₃</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>TiO₂</th>
<th>MgO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>CaO</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.3</td>
<td>0.14</td>
<td>1.3</td>
<td>10.1</td>
<td>2.1</td>
<td>0.12</td>
<td>1.18</td>
<td>2.77</td>
<td>12.01</td>
<td>24.15</td>
</tr>
</tbody>
</table>

(*) کاهش وزن در اثر احتراق (Loss on Ignition)

![شکل 1: نمودار تجزیه عضیری بنتونیت مورد بررسی در پرتو ایکس](downloading)

(الف) (الف) (الف)

گرفتاری دادن کاني تا 530 درجه سانتیگراد (نمونه H) باعث تخریب کاني و به بین رفت قله 14 اگستروم شده است که موارد فوق ویژگی های کاني های گروه اسمکتیت است. (ب) نمودار تجزیه عضیری بنتونیت مورد بررسی در پرتو ایکس.

*منابع: کوثری، اکبری، مهربانی و همکاران (2010) نمودار تجزیه عضیری بنتونیت را به-

[19] مهربانی و همکاران (2010) نیز کاني مونتموریلونیت را به-
تأثیر اسیدهای آلی بر رهاسایی عناصر

در این کاتی به عنوان کاتیون تبدیل است. [21] نتایج تجزیه می‌باشد که در مورد در این کاتیون تبدیل عناصر از ترکیب اسیدهای آلی [12] نیز حضور مقداری

خمیری‌های برون‌های سدیم و کلسیم را در همان نشان می‌دهد. (جدول 1) به امکان قرنی و گونون ۱۱۰ همراهی برون‌های سدیم و کلسیم در ساختار کاتیون تبدیل مختصر اانواع با درجه تورم می‌نیماید. بالاست.

جدول ۲ نتایج سطح و وزن تبدیل کاتیونی برون‌های مورد بررسی

<table>
<thead>
<tr>
<th>سطح وزه (گرم)</th>
<th>تعداد مشاهده (در هر گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۱۸۵</td>
<td>۲۳</td>
</tr>
</tbody>
</table>
جدول ۳ تجزیه پردازش تاثیر دوره‌های خشک و مرطوب شدن بر میزان رهاسازی آلومینیوم، سیلیسیم، منزیم و آهن در حضور دو اسید سیتریک و اگالیک.

| میزان مرطوبت | نر درجه آرایی | منعیت تغییرات | نتایج
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>آهن</td>
<td>۷/۹۹۹</td>
<td>۹/۶۳۷</td>
<td>۸/۳</td>
</tr>
<tr>
<td>منزیم</td>
<td>۷/۹۳۷</td>
<td>۹/۵۹۷</td>
<td>۸/۱</td>
</tr>
<tr>
<td>سیلیسیم</td>
<td>۷/۸۴۲</td>
<td>۹/۵۷۴</td>
<td>۸/۲</td>
</tr>
<tr>
<td>۹/۸۱۸</td>
<td>۹/۶۳۷</td>
<td>۹/۵۹۷</td>
<td>۹/۵</td>
</tr>
</tbody>
</table>

شکل ۲ تاثیر نوع اسیدهای آلی بر رهاسازی عنصر از کانی بنتونیت (در رابطه با هر عنصر میانگین‌های با حروف متغیر در سطح ۵ درصد آزمون LSD تفاوت معنی‌دار دارند).

شکل ۳ تاثیر تناوب‌های خشک و مرطوب شدن بر رهاسازی عنصر از کانی بنتونیت.

شکل ۴ تاثیر تناوب‌های خشک و مرطوب شدن بر رهاسازی عنصر از کانی بنتونیت.

مقاومت گیتی تکنیک دو اسید آلی اگالیک، pKa1 = ۲/۳۹۶ و pKa2 = ۴/۳۹۶ (pKa1 = ۲/۸۸۶ و pKa2 = ۴/۸۸۶) نشان می‌دهد که در مقایسه دو اسید آلی سیتریک و اگالیک، اسید اگالیک دارای قدرت اسیدی بیشتری است. بنابراین می‌توان گفت که رهاسازی عنصر سیلیسیم و آهن از ساختار کانی همیشه بیشتری است. در مقایسه با استاد و همکاران [۲۵] نیز افزایش اندازه‌گیری اولومینیوم را در نتیجه کاربرد افزایش که تشکیل همبافت‌های سطحی با آلومینیوم و تصفیه پریومینیوم با آکسیژن و در نتیجه افزایش رهاسازی آلومینیوم به درون محلول بهره‌دار است. استاد و همکاران [۲۵] معنیده که حداکثر آلومینیوم از ساختار کانی موجب بر هم خوردن توانایی با الکترولیتی در کانی شده و در نتیجه پیوند بین اتم‌های دیگر موجود در ساختار کانی (منزیم و آهن) تهیه و پا به رهاسازی آن‌ها به قار محول خواهد
می‌تواند تاثیر نتایج خشک و مرطوب بر رهاسازی برخی عنصر از...

محتوی برخی عنصر ساختاری کانی‌های سیلیکاتی مانند آهن و
منگنز که طرفیت منجر دارد، دستخوش تغییر شده و با تغییر
طرفیت این عنصر تعادل بار الکتریکی در ساختار کانی‌های
سیلیکاتی بر هم خورده و نابلوکاری آنها تسريع می‌شود
به عقیده‌های هرینگ و استام [24]، واکنش‌های اکسایشی که در
بلورها پس از آهن و منگنز صورت می‌پذیرد و از طریق
اکسیده شدن این عنصر موجب تغییر در باز مخلوط و در نتیجه
مخلوط شدن ساختار کانی می‌شود.

استاکی و همکاران [27] نیز در بررسی‌های اکسایش و احیا
بر یک سطحی و احیال پنجم نمونه اسپکتروسکوپی به
پرکتیم شیمیایی مختلف نشان دادند که در شرایط احیایی
بوده و بسیاری از ترکیب‌های نیترات یافته که
یافته‌های مذکور در ساختار کانی ایجاد شده و در نتیجه
ساختار کانی اکسایش شده که در نتیجه موجب یافته و
مطلق در مکان‌های کریستالی آهن شده و احیال سیلیسپسیم و
آهن را از ساختار کانی تسريع کند، خروج کانی‌های مختلف
از ساختار کانی سیلیکاتی باعث منشی شدن بار الکتریکی و
در نتیجه افزایش میزان طرفیت یافته کانی‌پنی در آه‌سی شود
(جدول 4).

در این اساس، از آن‌جایی که پنومه‌های مورد بررسی در این
پژوهش حاصل مقداری آهن و منگنز در ساختار خود است
(جدول 1)، امکان سازوکار فوک برای توجه ناجی محتمل به
نظیر می‌رسد.

شکل 3- تاثیر درجه‌های شدت حفر و مرطوب بر راهسازی عنصر از میان مولود بررسی (در رابطه با این عنصر، میانگین‌های با حروف
مختلف در سطح 5 درصدی گزارش شده است.)
جدول ۴ ظرفیت نیادی کاتانونی بیشترین پس از اعمال اندوهای خشک و مرطوب، ضمن در حضور اسیدهای آلی.

<table>
<thead>
<tr>
<th>ظرفیت نیادی کاتانونی</th>
<th>تناوب‌های خشک و مرطوب</th>
</tr>
</thead>
<tbody>
<tr>
<td>(سانتی‌مول در هر کیلوگرم)</td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td></td>
</tr>
<tr>
<td>۱ مرتبه</td>
<td></td>
</tr>
<tr>
<td>۲ مرتبه</td>
<td></td>
</tr>
<tr>
<td>۳ مرتبه</td>
<td></td>
</tr>
<tr>
<td>۶ مرتبه</td>
<td></td>
</tr>
<tr>
<td>۹ مرتبه</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴ مقایسه‌ی رهازاسی عنصر در حضور اسیدهای آلی پس از اعمال تناوب‌های خشک و مرطوب، ضمن در رابطه با هر عنصر، میانگین‌های با حروف مشابه در سطح ۵ درصد از مول الکترونی نشان دارند.

به عقیده‌های هارلی و گیلکز (۳۱) در بررسی عوامل موثر بر رهازاسی عنصر مغذی مورد نیاز گیاهان از کاتانونی سیلیکاتی صرف نظر از سازوکار انحلال، بیشتر واکنش‌های وابسته به اکسیژن و کاهش (در بلوهای حاوی آهن و منگنز) ترکیب محلول خاک و دمای محیط است. به عقیده‌های نویسنده (۳۲) اکسیژن آلی در بیون باعث افزایش هواگردگی آن می‌شود.

برداشت
این بررسی نشان داد که ذو فرض یک صورت عمده از قاده به رهازاسی هر مغذی عنصر سیلیکسیم، منزئیم و آهن از کاتانونی بیشترین نسبت در عدم حضور اسیدهای آلی در شرایط آزمایشگاهی می‌باشد. این را می‌توان به جذب کاتانونی موجود در سطوح کاتانونی سیلیکاتی بوسیله‌ی لیگاندهای
مناسب در رهاسازی آهن و مسیزی از ساختار کالی پتونیت معرفی کرد. در کل، فرآیند هواوی‌گی کالی پتونیت در حضور اسید های آی را توان در قالب یا جایگونه کالی پتونیت قابل از پهنی‌های مختلفی می‌تواند با H2O2، X، Mg و Fe خروج Al و Si از این ورودی به دنبال یافته کرد. طرف دیگر، پاتونیت در حضور اسید های وابسته به تونوبه، خشک، و مربوط به ناحیه فیزیکی آب انرژی از افزایش تناوب‌های خشک و مربوط به رهاسازی عناصر از کالی پتونیت آرانی می‌باشد. همچنین اثر همکاریت تناوب‌های خشک و مربوط به حضور اسید های آی، نیز در اثر معنی‌دار افزایشی به رهاسازی عناصر به سیستم هیدرو اسید سیستم و آگرالیک به مدت است.

مراجع

[12] محمدی جعفری ف، لندی‌الد، حجتی س، عماری خواه ه، "آرامش‌یابی سنگین از کالی سیالولت تحت تاثیر در صدای آی" مجله بلوشتی و کالی شناسی ایران، 23(1394) ص 30-33.

[19] ابراهیمی نصرآبادی خ. لالو، 21 تاثیر مرحله آماده‌سازی نمونه‌های بتونیت شرق ایران در شناسایی دقیق آنها، دوازدهمین همایش بلور شناسی و کانی شناسی ایران، دانشگاه شهید چمران اهواز (1384).

