سنتر و سنتوسانی ساختار بلوری کمیلکس چهار هسته‌ای قلع تهیه شده از دی کلرید دی
متیل کلر

غلامحسین مهدوی‌زاده، سعید آباد

دانشکده شیمی، دانشگاه صنعتی اصفهان، ایران

چکیده: همیافت چهار هسته‌ای قلع با نام (آبیس (Sn(μ3-اسکو)- بیس (μ-ایزوپروپانوسیک)- دی کلرو- آکتا کبس (4-متیل)-) ترزا قلع (یا {

استفاده از دی کلرید دی متیل قلع و در حضور پتاسیم ایزوپروپانوسیک تهیه شد. این ترکیب با فرمول {CH3}3SnCl2(C3H7O)2O2 در دست‌ترا ارگانیستوکسان‌ها رده‌بندی می‌شود. ساختار حالت جامد بلو روی این ترکیب با روش بلورناسی پراش پرتو اکسی

تعیین شد. همیافت تهیه شده بسیار با مولکول چهار هسته‌ای با سه فلزات، پلن ماندنی با هسته‌ای Sn4O4 است. واحد پقاتان این

ترکیب شال چهار اتم قلع (IV) است. از برحسب کنش‌های C-H...Cl بین این واحدهای چهار هسته‌ای، یک ساختار زنجیره‌ای نامناسبی دو بقاء ایجاد شده است. ساختارهای ملاحظه می‌کند که گروه اکسیژن که ماهیت آلکوسیدی دارد (اکسیژن) با اتصال یک با اتم قلع در ارتباط است. نتایج سرشاری سپیسته‌های آلی یافته جنگ هسته‌ای قلع نشان داده است که علاوه بر حجم، اندازه و ماهیت گروه‌های آلی متصل به قلع، ماهیت لیگانده‌های شرکت کننده در

همارایی نیز در ویژگی‌های فیزیکی و شیمیایی این ترکیب‌ها موثر است.

واژه‌های کلیدی: ترکیب‌های آلی قلع/ایزوپروپانوسیک، ساختار بلوری/جهان هسته‌ای

مقدمه

ترکیبات آلی قلع ترکیب‌های شیمیایی هستند که از اتم قلع به عنوان فلز مرکزی و یک استخوان آلی تشکیل شده‌اند که

Sn-C و یا به شکل گروهی از شرکت‌های شیمی آلی فلزی است. اولین

ترکیب آلی قلع دی‌تاتل دی کلرید قلع است که ادوارد ازانکلان در سال 1849 میلادی تهیه کرد. تحقیقات جدید در این حوزه اینکه منجر به تهیه ترکیب‌هایی از قبیل

Sn2SnCl4 یافت شده است که برای همه آنها با روش مناسب ترکیبات آلی فلزی و لیگانده‌های آلی متفاوت با یکدیگر وارد

وکنش می‌شوند که در بین ترکیب‌های آلی فلزی چند

mohammadnezhad@cc.iut.ac.ir
آیکافت شود، آینده این کمپیوترات آیلی قلع از جمله یا اکنون باعث شکل‌های میانی‌هاهای چهار عضوی قلع بوده و یا به‌طور کامل شکل‌های میانی‌هاهای چهار عضوی قلع از جمله یا اکنون باعث شکل‌های میانی‌هاهای چهار عضوی قلع از جمله می‌تواند برجام‌های بی‌پروره یا نیاک‌های میانی‌هاهای جزء هستند که در آن‌ها

\[
X = Y = Cl, Br, I, OCH_3
\]

است. این کمپیوترات عوض‌های

\[
\begin{align*}
\text{Sn}_2S_2O_2 X & = \text{Sn}_2S_2O_2 (X = Cl, Br, I, OCH_3) \\
\text{Sn}_2S_2O_2 Y & = \text{Sn}_2S_2O_2 (Y = Cl, Br, I, OCH_3)
\end{align*}
\]

همچنین در ساختار این تکنیک‌ها به مجزا سطح‌های آیلی قلع‌های میانی‌ها و همگونی جزء هستند. اطراف آن قلع به‌صورت هشته و یا به‌جای دیگر

نما کلی و ساختار همبستگی چهار عضوی قلع را می‌توان در شکل (1) مشاهده کرد. [4-7]. در شکل (2) یک نمونه از تکنیک‌های چهار عضوی قلع که در سال‌های قبل به‌صورت گرفته، شکل‌های میانی‌هاهای چهار عضوی قلع با استفاده شد. [8-9]. در این پژوهش، پژوهش‌های بی‌پروره همبستگی آیلی قلع برجام‌های با استفاده از دی‌کرید دی‌میلی قلع (ارابه شده و یا پروره) و ساختار بی‌پروره همبستگی مورد بررسی قرار گرفته است.

روش بررسی

dی‌کرید دی‌میلی قلع از شرکت ال‌دی‌کرید و مواد دیگر از شرکت مرکز خردپاری شهر دارند. همه شکل مورد استفاده از جمله هرگونه نرمال و تولید قلع از استفاده به روش‌های مرسوم با استفاده از معرفی‌های مناسب، نخست خشک و سپس در جو از تقطیع شدند [10]. برای تعیین ساختار بی‌پروره از

برای سنجش تکنولوژی مدل

\[
\text{Sn}_2S_2O_2 X = \text{Sn}_2S_2O_2 (X = Cl, OH, NCS, OMe, OAC)
\]

\[
R = Bu, Me
\]

شکل 1 ساختار کلی این گروه انسان‌شناسی‌ها برای دانستن و ادامه در این زمینه انجام گرفته است که علت این تمایل را می‌توان به روش سنتز ساده آن‌ها ارتباط داد: این تکنیک‌های دارای

\[
\begin{align*}
\text{Sn}_2S_2O_2 X & = \text{Sn}_2S_2O_2 (X = Cl, Br, I, OCH_3) \\
\text{Sn}_2S_2O_2 Y & = \text{Sn}_2S_2O_2 (Y = Cl, Br, I, OCH_3)
\end{align*}
\]

که در آن‌ها
ش. برای تهیه همافته مورد نظر، دی کلرید دی متیل قلع (۱۴ میلی مول) در تولوکن (۵۰۰ میلی لیتر) به‌طور کامل حل شد. محلول دیگری از واکنش پتاسیم فلزی (۸ میلی مول) با پروپانول (۱۰ میلی لیتر) در حلال تولوکن (۳۰ میلی لیتر) نیز تهیه شد. این محلول با سریک به محلول اولیه اضافه و به مدت ۲۴ ساعت سپس کشی شد.

سپس، در خلا حل قریب صورت گرفت و به جامد سفید حاصل ۲-پروپانول و تولوکن اضافه شد. رسوب‌های بقیه مانده با استفاده از صافی جدا شدند و با تخلیه محلول حاصل و قرار دادن آن در دمای ۵ °C بلوهه مناسب برای برعی پرتو- حاصل شد. دمای ذوب X ۲۳۵ °C.

بحث و بررسی
در این مقاله با استفاده از یک روش ساده ترکیب از خلاوادی نتایج گانودی استیتوسیس‌های ترکیب‌های حلال هسته‌ای قلی با لیگاند اکسوس+-همه‌شته و دی‌اکسوس–ساختاری و پلوری آنها مورد بررسی قرار گرفت که شما بیش از این واکنش در شکل ۳ شما بیش از این واکنش کمی باز از این واکنش در شکل ۳. شما بیش از این واکنش کمی باز از این واکنش در شکل ۳.
همبافت آبیس (μ2-اکسو)-بیس (μ-ایزوپروپیکو)-دی کلرو-آکتا کیس(4-منیل)-ترا فلک

جدول 1: داده‌های بلوری آبیس (μ3-اکسو)-بیس (μ-ایزوپروپیکو)-دی کلرو-آکتا کیس(4-منیل)-ترا فلک

<table>
<thead>
<tr>
<th>خواص</th>
<th>值得一ی</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>امپریک البورنیفیک</td>
<td>Sn₄Cl₂O₄C₁₄H₃₈</td>
<td></td>
</tr>
<tr>
<td>وزن شیمیایی</td>
<td>816.80</td>
<td></td>
</tr>
<tr>
<td>دما (K)</td>
<td>153(2)</td>
<td></td>
</tr>
<tr>
<td>طول موج (Å)</td>
<td>0.71073</td>
<td></td>
</tr>
<tr>
<td>سیستم بلور</td>
<td>تک سیل</td>
<td></td>
</tr>
<tr>
<td>گروه فضایی</td>
<td>P 2₁/c</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.4844(6)</td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.9873(4)</td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>19.2091(8)</td>
<td></td>
</tr>
<tr>
<td>تعداد نما</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ضریب امتصاص (mm⁻¹)</td>
<td>3.912</td>
<td></td>
</tr>
<tr>
<td>F(000)</td>
<td>1552</td>
<td></td>
</tr>
<tr>
<td>تعداد کریستال</td>
<td>0.14 × 0.22 × 0.46</td>
<td></td>
</tr>
<tr>
<td>Dc (g cm⁻³)</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>اندازه تغییرهای θ برای جمع‌آوری داده‌ها</td>
<td>2.24–22.99</td>
<td></td>
</tr>
<tr>
<td>درجات θ</td>
<td>-21° ≤ h ≤ 21, -15° ≤ k ≤ 15, -28° ≤ l ≤ 28</td>
<td></td>
</tr>
<tr>
<td>انتقال نتیجه‌گیری</td>
<td>2495</td>
<td></td>
</tr>
<tr>
<td>نتایج رئول [R(int)]</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>نتایج رئول [R(int)]</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>خوبیت</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>رابطه انریکسیون دامنه max/min</td>
<td>1.3336, 2.745</td>
<td></td>
</tr>
<tr>
<td>اکتیویت رابطه [I > 2σ(I)]²</td>
<td>R₁ = 0.0, 0.344</td>
<td></td>
</tr>
<tr>
<td>wR₂ = 0.9, 0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رابطه رابطه (همه داده‌ها)</td>
<td>R₁ = 0.0, 0.248</td>
<td></td>
</tr>
<tr>
<td>wR₂ = 0.0, 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCDC No.</td>
<td>1448142</td>
<td></td>
</tr>
</tbody>
</table>

* R₁ = Σ||Fo|-|Fc||/Σ|Fo|, wR₂ = [Σ(w(Fo²-Fc²)²)/Σw(Fo²)]^{1/2}
جدول ۲ طول‌های (Å) و زاویه‌های (°) پیوندی انخکانی

<table>
<thead>
<tr>
<th>طول‌های پیوندی</th>
<th>طول‌های پیوندی</th>
<th>زاویه‌های پیوندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl1-Sn1</td>
<td>۲.۵۷۵۶(۳)</td>
<td>O1-Sn1-C11</td>
</tr>
<tr>
<td>O1-Sn2</td>
<td>۲.۱۶۹۲(۳)</td>
<td>O4-Sn4-O3</td>
</tr>
<tr>
<td>O2-Sn3</td>
<td>۲.۰۱۵۶(۳)</td>
<td>Sn2-O1-Sn1</td>
</tr>
<tr>
<td>Cl4-Sn4</td>
<td>۲.۵۱۱۸(۳)</td>
<td>Sn2-O2-Sn1</td>
</tr>
<tr>
<td>C1-O1</td>
<td>۱.۳۴۵۴(۴)</td>
<td>Sn3-O2-Sn2</td>
</tr>
<tr>
<td>C2-O4</td>
<td>۱.۴۲۷۵(۲)</td>
<td>O4-C2-Sn3</td>
</tr>
<tr>
<td>زاویه‌های پیوندی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Sn1-C11</td>
<td>۷۳.۸۲(۵)</td>
<td>C1B-Sn1</td>
</tr>
<tr>
<td>O2-C11-Sn1</td>
<td>۸۵.۱۱(۳)</td>
<td>C1B-Sn1</td>
</tr>
<tr>
<td>O2-Sn1-O1</td>
<td>۷۲.۵۴(۳)</td>
<td>H1B1</td>
</tr>
<tr>
<td>C1B-Sn1-O1</td>
<td>۹۵.۳۰(۱)</td>
<td>C2A-Sn2</td>
</tr>
<tr>
<td>C1A-O1-Sn1</td>
<td>۹۴.۲۳(۱)</td>
<td>H2A1</td>
</tr>
<tr>
<td>C1B-Sn1-C1A</td>
<td>۱۳۱.۵۰(۲)</td>
<td></td>
</tr>
<tr>
<td>O3-Sn2-O2</td>
<td>۷۳.۲۱(۹)</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵ سولول واحد همبافت (ایپس (μ-ایپسکو)- پیس (μ-ایپسپروکو)- دی کلرو- اکتا کیس(۴-متیل)-نترا فلی)

ترکیب را می‌توان به‌صورت یک تتراژمر که از واحدهای دیمین Sn2O2 تکیه کننده است در نظر گرفت.

ساختار مولکولی و سولول واحد به روش پلارسانی پراش پرتو ایکس تعبیه شد (شکل‌های ۴ و ۵). ساختار مولکولی
عبارت است از: $10 \times 78.33 = 783.3 \text{ Å}$

طول پیوند هیدروژنی اتم کلر با یک هیدروژن مولکول دیگر حدود 2\,88 Å است که بنابر منابع اعلام شده یک پیوند هیدروژنی با قدرت ضعیف است (15 - 17) که به ترتیب فاصله بین آنها 3.285 Å است. بنابراین، همه این است که با بررسی ساختار ترکیب مشخص شد که اتم Cl(1) با مولکول‌های دیگر وارد برهم‌کنش نمی‌شود و از طرفی اتم Cl4 با دو اتم هیدروژن گروه ایزوزیکوسید وارد برهم‌کنش می‌شود. این صورت که فاصله Cl4 - H2 = 2.891 Å و Cl4 - H21H = 2.884 Å است. یکی از مهمترین ویژگی‌های ساختاری ترکیب این است که در حلال‌هایی نظیر تولوئن و کلروفوروم انحلال یافته، ولی در اما جنگ‌کن انتظار می‌رود، در ترکیب تقریباً یکسان است.

طول همه پیوندهای Sn-C با استحاطه C3B و C3A و اتم‌های اتاقی پیوند 2\,111 Å و $3\,191 Å$ است. این یافته به ترتیب دو اتم کربن 3\,171 Å و $3\,451 Å$ می‌تواند در ساختار اتم‌های اتاقی باعث آن شود که ساختار ترکیب به صورت یک شبکه‌ای ابر مولکول سه بعدی رشد کند (شکل ۶).

در این ترکیب اتم Cu قلی دارای هندسه‌های هرمی و همی‌سانی این است که در آن همه اتمهای اکسیزن در موقعیت بل قرار می‌گیرد. با این تفاوت که اکسیزن، اتم Cu به صورت بل بین سه اتم قلی و اکسیزن‌های ایزوکوسید بین دو اتم قلی قرار گرفته‌اند. دانشکده انتظار می‌رود اکسیزن‌هایی که با سه پیوند به صورت بل پیوند قرار می‌گیرد در این ترکیب با اشیا مناسبی اتأیه‌ای کلر و هیدروژن، پیوند هیدروژنی با اتم Cu یافت شده است.

شکل ۶ ساختار همبسته {Bیس (1\,1\,1-اکسیزن)-Bیس (1\,1\,1-اکسیزن)-دی‌کلرو-اکتا کسی (4-متیل)-نترا قلی} در حالتی که بین اتم‌های کلر و هیدروژن، پیوند هیدروژنی با فاصله شده است.
برداشت

در این مقاله با استفاده از یک ترکیب آلی قلیع، یعنی دی کلرید دی متیل قلیع، و سیدم ازوپروپیکسید یک همافتا چهار هسته ای قلیع تهیه شده. با استفاده از بلوچ‌نشانی پروتو ایکس ساختار بلوئی آن تشخیص داده شد. در این پژوهش ماهیت پیوند گروه‌های آلی با قلیع و ایگاندهای دیگر شرکت کننده در ساختار همافتا همافتا مورد ارزیابی قرار گرفت. واضح است که امروزه پژوهش‌ها بر روی ترکیباتی از این دست در حال رشد است زیرا فعالیت‌های بالایی را به عنوان ضد تومور از خود نشان می‌دهند. به عنوان آینده نگرشی، با توجه به ترکیبات مشابه شده، امتنع انتشار داشت که همافتا محصول فعالیت ضد توموری از خود نشان دهد.

مراجع

