The Effect of Sintering Temperature on Magnetic Properties of Barium Ferrite Produced by Corecipitation

Zaker, A. M.

Iran university of sience and Tecnology Department of physics Tehran Iran

Key Words: Sintering temperature, Barium Ferrite, Microstructure

Abstract: Isotropic samples of Barium Ferrite are prepared by coprecipitation method. To study the effect of sintering temperature on magnetic properties of Barium ferrite we have sintered the samples in different temperature from 900 up to 1100°C. Mean partical size and porosity of the samples are determind by scanning electron microscop (SEM), magnetic phase and magnetic parameters are measured by X-ray diffractometry (XRD) and DC Magnetic Hysteresis Loop. Experimental results show that the best magnetic parameters, coercive force H_c, remanence magnetization B_r and maximum stored magentic energy $(BH)_{max}$ is found in samples with sintering temperature about 900 to 950°C.
بررسی اثر دماه تفجوشی بر ویژگی‌های مغناطیسی فریت باریم تهیه شده به روش همسوی شیمیایی

عبدالمهdí داکر
دانشکده فیزیک دانشگاه علم و صنعت ایران

چکیده: به منظور بررسی اثر تفجوشی بر ویژگی‌های مغناطیسی فریت باریم همسان‌گردن، نمونه‌هایی از آن به روش همسوی شیمیایی و در دماهای تفجوشی مختلف (C 900-1100) تهیه و پارامترهای مغناطیسی آنها اندازه‌گیری شدند. ریز ساختار و تخلخل نمونه‌ها با میکرو وسکوب الکترونی رویشی (SEM) و پراش (XRD) و مشخصات مغناطیسی آنها با استفاده از حلقوی پس‌ماندن سیاه باریم و مقاپسی‌ها و مقایسه با مدل‌گرایی قرار گرفت. با بررسی نتایج این پژوهش، حساسیت پارامترهای مغناطیسی، نیروی واردانه، مغناطیسی، B(H)max، نرمی ذخیره شده، BSI و اختلاف بیو تانگیکه، هوریش، Hc و دماه تفجوشی آنها بین 950°C تا 980°C بوده است.

واژه‌های کلیدی: دماه تفجوشی، فریت باریم، ریز ساختار

مقدمه
فریت باریم شش گوشه که از مغناطیس‌هایی ساخت شده‌است و برای ساخت مغناطیس‌های دامپی مورد استفاده قرار می‌گیرد. می‌تواند جانشین مناسبی برای مغناطیس‌های آلاین بسیار باشد. با توجه به خواص مغناطیسی ویژه‌ای فریت و ارزانی مواد اولیه آن هنوز

[Downloaded from ijcm.ir on 2022-04-27]
بررسی اثر دمای تجوشی بر ویژگی‌های مغناطیسی...

تحقیقات و سیعی روی آن انجام می‌گیرد [۱۲]. برای ساخت این فریت از روش‌های متنوع مختلف سرمایی و شیمیایی استفاده می‌شود [۱۳].

روش شیمیایی، به دلیل مخلوط شوندگی در مقدار مولکولی و امکان دستیابی به ذرات بسیار ریز بدون نیاز به عملیات طولانی آسیاب، از اهمیت ویژه‌ای برخوردار است [۱۴]. به‌خاطر این ویژگی‌ها و این مدله این ماده به دلیل نیودن نشان‌های باقیمانده و تقصیه‌ای بلوری ناشی از آسیاب‌های طولانی که در روش سرمایی به کار گرفته می‌شود، و نیز امکان تشکیل فاز‌های میانی نامغناطیسی کمتر، برتری‌های دیگر روش شیمیایی به شمار می‌آیند. در این تحقیق نمونه‌هایی از فریت باریم به روش همرسوبی شیمیایی به‌کار گرفته شدند و آن‌ها مورد بررسی و مقایسه قرار گرفت.

فرایندهای ساخت و نتایج

برای نمونه‌ها به روش همرسوبی شیمیایی از مواد اولیه، کلرید آهن و کلرید باریم آبادار استفاده شد. نسبت مواد اولیه Fe/Ba به نسبت وزنی 12 بود. درون بشری محتری آب مقطور ریخته و کاملاً مخلوط شدن‌و، سپس این مخلوط به آرامی به یک محلول قلیایی (PH > 13) اضافه شد که پس از واکنش شیمیایی زلی به رنگ آذر تشکیل گردد. برای بیرون راندن پوسته برابری می‌شود، زل به دست آمده چندین بار به آب مقطور شسته و از صافی غیر داده شد. پس از خشک کردن محصول ماده‌ای آریخت به‌دست آمده. برای تعیین دمای تشکیل فاز بلوری، ماده آریخت در آسیاب دستی به صورت پودر در آورده و سپس در کوره الکترپیک در چند دما مختلف (۹۵ - ۹۰۵ درجه سانتی‌گراد) گرم‌ها داده شد. نتایج پراش به دست آمده از نمونه‌ها تشکیل فاز بلوری فریت باریم را در دمای ۹۵ درجه سانتی‌گراد به بالا تایید می‌کند. شکل ۱ نشان داده که در دماهای بالاتر از ۹۰۰ درجه سانتی‌گراد می‌توان ایجاد کردن این قوی‌ترین دمای جدید شد.

برای کامل شدن شکل‌گیری فاز مغناطیسی مطلوب بعنوان باریم شوگری در ساخت نمونه‌ها، پودر به تهیه شده در کوره الکترپیک همراه با دمای اکسیژن با فشار کم به مدت دقیقه در دمای ۹۵ درجه سانتی‌گراد تکثیر شد. به منظور استریس به پودر مناسبی برای شکل‌دهی ماده کلیشه شده در یک هاون دستی آسیاب شد و پودر بکنواخته به دست آمد. آنگاه این پودر در ...
شکل 1. نقشه پراش پرتو X از نمونه تکلیس شده در دمای $800^\circ C$.

ما بایستی به صورت استوانه شکل داده شده سرتابان نمونه‌هایی به دست آمده به مدت 6 دقیقه در چند دمای مختلف ($100^\circ C$ تا $900^\circ C$)، در تفحیش قرار گرفتنده در تمام تحقیق‌ها برای پارامترهای مغناطیسی، میانگین اندازه‌دهانه‌ها و درصد تخلخل به دست آمده برای نمونه‌ها در جدول 1 ارائه شده‌اند. با استفاده از عکس‌های تهیه شده با میکروسکوپ الکترونی از سطح مقطع شکست هر نمونه اندارا دانه‌ها و میزان تخلخل در نمونه‌ها مورد بررسی قرار گرفتند. برای اندازه‌گیری پارامترهای مغناطیسی نمونه‌ها از دستگاه حلقه پیمان نگاشت مغناطیسی DC (DC Magnetic Hysteresis Loop) در پژوهشگاه مواد و انرژی استفاده شد.

بحث و برداشت

نقشه پراش پرتو ایکس نمونه‌های تهیه شده در دمای‌های مختلف تفحیشی نشان می‌دهند که در همه آنها فاز مغناطیسی مطلوب $BaFe_{12}O_{19}$ به علاوه مقدار کمی از فاز‌های ماینی Ba_2FeO_3، $BaFe_2O_4$، Fe_2O_3 و ... تشکیل شده است. به‌همین است که
جدول 1 دماهای تفجوسی و پارامترهای آنالیزگری شده.

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>همگالگنی (KOe)</th>
<th>(KG)B</th>
<th>(KG)M</th>
<th>میانگین اندازه دانه‌ها (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>4,800</td>
<td>2,760</td>
<td>4,400</td>
<td>25,3</td>
</tr>
<tr>
<td>925</td>
<td>4,710</td>
<td>2,805</td>
<td>3,900</td>
<td>24,0</td>
</tr>
<tr>
<td>950</td>
<td>4,645</td>
<td>2,840</td>
<td>3,400</td>
<td>22,8</td>
</tr>
<tr>
<td>975</td>
<td>4,575</td>
<td>2,800</td>
<td>3,200</td>
<td>19,8</td>
</tr>
<tr>
<td>1,000</td>
<td>4,625</td>
<td>2,760</td>
<td>3,100</td>
<td>17,6</td>
</tr>
<tr>
<td>1,025</td>
<td>4,550</td>
<td>2,800</td>
<td>2,900</td>
<td>15,3</td>
</tr>
<tr>
<td>1,050</td>
<td>4,475</td>
<td>2,760</td>
<td>2,700</td>
<td>13,2</td>
</tr>
</tbody>
</table>

این فازهایی میانی تأثیر قابل توجهی بر ویژگی‌های مغناطیسی نموده‌اند. گرچه
شدت تأثیر گذاری آنها به دمای تفجوسی بستگی دارد ولی این تأثیر گذاری در کمترین دمایی
900°C با توجه به جدول 1 کمترین مقدار را دارد.

پدید آمدن فازهای نامغناطیسی می‌تواند موجب افزایش نیروی وادارنده مغناطیسی
شدت چون این فازها از جریان‌های حوزه‌ها و هم‌خط شدن آنها با میدان خارجی جلوگیری
می‌کند. ولی از نتایج بدست آمده چنین برداشت شد که Hc به آنکه به بیداشت
فازهای نامغناطیسی حساسیت نشان دهد، بیشتر به اندازه دانه‌ها بستگی دارد (شکل 2)
و این هزینه Hc به میزان تخلخل در نموده‌اند همین امر است. در دمای تفجوسی
بابین دانه‌ها بیشتر، تخلخل بیشتر، و در نتیجه Hc بزرگ‌تر است. افزایش دمای تفجوسی
موجب رشد بیشتر دانه‌ها شده و تخلخل کمتر می‌شود و به نهایت Hc نیز به مقدار قابل توجهی

شکل 2 و ابستکی آنالیزه دانه‌بندی D و میدان وادارنده مغناطیسی Hc به دمای تفجوسی نموده‌اند.

[14x43] [Downloaded from ijcm.ir on 2022-04-27]
کاهش می‌یابد (شکل ۳). تغییرات پسماند مغناطیسی به حسب دمای تفجشی (شکل ۲) می‌تواند ناشی از عوامل مختلفی باشد. افزایش اولیه باز می‌گردد به تشكیل فاز مغناطیسی مطلوب و ریز بودن اندازه دانه‌ها از رو وند رشد دانه‌ها می‌توان پذیرفت که در دمای تفجشی باید تن تر از ۹۰۰°C میانگین اندازه دانه‌ها به مقدار بحرانی در حدود ۱۵۰nm در حدود فاز ابریامغناطیس نزدیک می‌شود [۲]. افزایش دمای تفجشی تا ۹۵۰°C موجب حذف دانه‌های ریز شده و B_r (KG)
شکل 5: وايستگي مغناطيسی اشباع B_t به دمای تفجورشی نمونه.

نطبق در نمونه‌ها را کاهش می‌دهد و در نتیجه پسماند مغناطیسی افزایش می‌یابد. افزایش بیشتر دمای تفجورشی از $950^\circ C$ تا $960^\circ C$ نمایانگر مغناطیسی بیشتری در زمینه فاز مغناطیسی مطلوب ایجاد می‌کند و در نتیجه B_t کاهش می‌یابد.

شکل 5 نشان می‌دهد که مغناطیسی اشباع M_s نمونه‌ها نیز وابسته به دمای تفجورشی است. در این رابطه که به $m\rho$ می‌پردازیم، ρ گرمی ماده نسبت مستقيم دارد. $m\rho$ به جمله ماده نسبت مستقيم دارد. μ چگالی جرمی و μ گشتاور مغناطیسی مولکولی، بنابراین با افزایش تخلخل بین μ کاهش چگالی، μ باید کم شود که این هدایت کاهش می‌یابد. در بررسی انرژی مغناطیسی تخلخل به مغناطیسی، ذخیره شده بر حسب دمای تفجورشی نمونه‌ها، به نمونه‌های مربوط می‌شود که دمای تفجورشی به H_{max} به دلیل جهش مقدار انرژی ذخیره شده در نمونه‌ها نسبت مؤثر ندارند. بنابراین که بر B_t تأثیر گذاشته در مقدار انرژی ذخیره شده در نمونه‌ها نسبت مؤثر ندارند. در مجموع می‌توان گفت که دمای تکلس و تفجورشی از عوامل بسیار مهم در ریز ساختار و زیستگی مغناطیسی نمونه‌ها به شمار می‌آید برای دستیابی به بهترین پارامترهای مغناطیسی در فریت بازیم تهیه شده به روش هم و نوبتی شیمیایی مناسب‌ترین دمای تکلس $950^\circ C$ تا $960^\circ C$ است.
قدردانی
از جنب آقای دکتر فتح... پژوهشگاه مواد و انرژی به خاطر موافقته بإنجام انتقاده گیر چرخه مغناطیسی و نیز آقای دکتر جعفر جوادی نوری، پژوهشی دانشکده مهندسی مواد به خاطر مساعدت و همکاری در استفاده از دستگاه SEM قدردانی و سپاسگزاری می‌شود.

مراجع