Determination of Firing Temperature of Pottery, Brick and Tile by XRD and STA

Soodabeh Durali, Faranak Bahrololoumi
Research Center for Conservation of Cultural Relics

Key Words: Pottery, X-ray diffraction, Thermal analysis, Archaeology, Conservation

Abstract: Ceramic refers to all fired products including pottery, brick, and tile that is primarily composed of clay with different amounts of other materials that have a source from soil and when they fired, produced a hard material. Firing the clay body to the hardness of ceramic body is the next critical stage in manufacturing.

To determine the firing temperature, four fired (450, 600, 850, 1000°C) together with unfired clay samples were studied, using XRD and STA methods, and then an unidentified firing temperature sample was examined. Formation of new minerals in the temperatures mentioned above and the stage of carbonates elimination can be determined with XRD, but to get a better result, specially for those samples which fired temperature is nearly 600°C, it is necessary to use STA method.
تعیین دمای پخت سفال، آجر و کاشی به وسیله STA و XRD

سودابه دورعلی، فرانک بحرالعلومی

چکیده سرامیک به کلیه فراورده‌های پخته شده اعماق آجر، کاشی و سفال اطلاق می‌شود که از رس و مقادیر مشابه موارد پر کننده با میزان خاک ساخته شده و در اثر گرمای به فراورده صخیح تبدیل شده‌اند. هرکدام از تغییرات اساسی که در ساعت و تکیه‌گاه‌های سازندگی در پوشش روزی موی دیده مرحله تغییرات که در STA و XRD به ترتیب انجام شده‌اند. تعیین کانولوپه چه در ماه‌های اخیر بانک می‌شود و تغییرات که در STA و XRD به ترتیب انجام شده‌اند. تعیین کانولوپه چه در ماه‌های اخیر بانک می‌شود و تغییرات که در STA و XRD به ترتیب انجام شده‌اند. تعیین کانولوپه چه در ماه‌های اخیر بانک می‌شود و تغییرات که در STA و XRD به ترتیب انجام شده‌اند. تعیین کانولوپه چه در ماه‌های اخیر بانک می‌شود و تغییرات که در STA و XRD به ترتیب انجام شده‌اند.

واژه‌های کلیدی: پخت سفال، پخش سنگی، پرتوی آب، نسبت دمایی، باستانی شناسی

مقدمه

تعیین دمای پخت سفال، سرامیک، آجر و کاشی درایوهشتهای باستانی شناسی و مرمت از اهمیت بسزایی برخوردار است. با تعیین محدوده دمایی که می‌توان به نکات کلیدی روشهای پخت سفال، نوع کوره، سیستم هوا، دهه آن و بالاخره پیش‌تختهای فنی هر دوره دست یافته و در مرمت باشیم تاریخی، بناهای تاریخی، آجرها و کاشی‌ها که با نوع اولیه همگونی و رفتار یکسانی نسبت به شرایط آب و هوایی منطقه‌هایی باشند، که از
تغییرات فیزیکی و شیمیایی خاک در حین بخش مرهون وجود هر یک از این ترکیبات است. این تغییرات به شرح زیرند:
- در دمای بین 100 تا 150°C، بندن سفالی کاملاً خشک شده و مولکولهای آب موجود در فضای بین ذرات رسانه خارج می‌شوند.
- از 250°C تا حدود 450°C، کربن و سایر مواد آلی موجود در رس، شروع به اکسایش می‌کند و به صورت CO۲ خارج می‌شوند.

با افزایش دمای کوره، مولکولهای آب که با شیمیایی دارند خارج می‌شوند و سرعت این واکنش به شدت بیشتر می‌شود.

HALOZIBIT و کانووینت بینتر آب شیمیایی را در دمای پایین‌تر انجام می‌دهند. در نهایت تا دمای 300°C همگی آب شیمیایی خارج می‌شود.

در حذف دمای بخش سفال، اجرای واکنشهای رس شامل
کربنات‌ها مانند دولومیت، سولفات‌ها مانند زئیس و آهن سولفید مانند پیریت و مارکاسیت در دمای بین 800-550 درجه سانتی‌گراد خارج می‌شوند.
در دماهای بالاتر از 115 درجه سانتی‌گراد فلزات مانند مس، نیکل و نیکورین تغییری نکرده و در فلزات دیگر، تغییرات زیادی گزارش می‌شود.
از حدود 600 درجه سانتی‌گراد باز شدن بازیابی آغاز می‌شود. پس از این در مدت کمی تغییرات زیادی در تناخالشکل‌ها دیده می‌شود و در نهایت تناخالشکل‌ها جدا می‌شوند.

بهدلیل نیاز باستان‌شناسان به بررسی دقیق فن آوری ساخت سفال در ادوار تاریخی مختلف و داشتن مبناي برای مقایسه نمونه‌ها شاهد در ماه‌های بحرانی بخشه و بررسی شدند.

روش کار

خاک مورد استفاده برای پخت نمونه‌ها از منابع اطراف تهران تهیه شد. این نمونه‌های با شکل کوزه‌های قدیمی و با ارتفاع تقریبی 18 سانتی‌متر و قطر دهانه 10 سانتی‌متر ساخته و در دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد در فاصله دماهای 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گراد و 85 درجه سانتی‌گراد در فاصله دماهای 100 درجه سانتی‌گراد و 450 درجه سانتی‌گر
نتایج برای پروتو ایکس نمودن‌های پخته شده در دماهای یخزیرانی، کانه‌های رسی و آجر قدمی

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>مشخصات نمونه</th>
<th>نتیجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>کوارتز، کلسیت، فلدسبات، میکا و کانه‌های رسی</td>
<td>خاک عامل</td>
</tr>
<tr>
<td>2</td>
<td>کوارتز، کلسیت، فلدسبات، میکا و کانه‌های رسی</td>
<td>پخت در 450°C</td>
</tr>
<tr>
<td>3</td>
<td>کوارتز، کلسیت، فلدسبات و میکا</td>
<td>پخت در 550°C</td>
</tr>
<tr>
<td>4</td>
<td>کوارتز و فلدسبات</td>
<td>پخت در 650°C</td>
</tr>
<tr>
<td>5</td>
<td>کوارتز، فلدسبات و بروکسین</td>
<td>پخت در 850°C</td>
</tr>
<tr>
<td>6</td>
<td>کانه‌های رسی خاکی خام</td>
<td>ابلیت، کانولوپت و کلاژنت</td>
</tr>
<tr>
<td>7</td>
<td>کوارتز، کلسیت، فلدسبات و میکا</td>
<td>نمودن آجر قدمی</td>
</tr>
</tbody>
</table>

بحث و برداشت

نتایج حاصل از بررسی الگوهای پراش در جدول ۱ آورده شده‌اند. کانه‌های موجود در خاک خام را کوارتز، فلدسبات، میکا، کلسیت و کانه‌های رسی تشکیل می‌دهند. در نمونه بهبود شده در ۱۴۰۰°C تغییر محسوسی مشاهده نمی‌شود. در طیف نمونه بهبود شده در ۶۵۰°C تفاوت‌های خاص نیست. حذف قله‌های کانه‌های رسی است که در مجموع با حذف کلمه آبها ساختاری همراه است. نمونه بهبود شده در ۸۵۰°C نسبت حاوی کوارتز و فلدسبات است. در این دمای کلسیت به کلسیم اکسید و کربن دی اکسید تجزیه می‌شود. قله‌های میکا و از الگوهای طیف حذف شده‌اند. نمونه بهبود شده در ۱۰۰۰°C علاوه بر کوارتز و فلدسبات حاوی کانه بهروکسین است که حاصل ترکیب کلسیم اکسید و محصولات تجزیه کانه‌های رسی است. [۱]

چنان که شکل ۱ نشان می‌دهد در مجموعه کانه‌های رسی، قله ۱۰۵/۰۴آ و ۱۰۷/۱۹آ در طیف ۱۰۰/۰۵آ نمودن اشباع شده با منیزم کلرید، قله ۱۳۱/۰۹آ در تیمار با اتانول گلیکول و قله ۱۰۹/۱۰آ در کمربای ۵۵۰°C بیانگر حضور ابلیت است. بیانیه قله ۱۴/۰۲آ و قله ۷۵/۱۰آ در تیمار با اتانول گلیکول و قله ۱۴/۰۲آ در دمای ۵۵۰°C معرف کلاژنت است. قله ۱۷/۵۱۸آ در تیمار با منیزم کلرید و عدم ایجادی آن در دمای ۵۵۰°C به دلیل تخریب ستاخور کانه، کانولوپت را نشان می‌دهد. ساختار کانه، کانولوپت را نشان می‌دهد.

چنان که قابل توضیح داده شد، خاک در حین پخته شدن در دماهای معین،
دستخوش تغییرات شیمیایی و شیمیایی مشخصی می‌شود که هر یک از این تغییرات می‌تواند دلیل بر بیخ شدن عایق نیتروژن‌زدای برخی آن دما باشد. مطالعه شکل 2 در طیف خاک خام کلیه تغییرات معنی‌دار خارج شدن آب نمونه در دمای حسیب STA 1050 ۵0 (همراه با کاهش وزن نمونه)، سوختن مواد آلی در دمای حسیب C، از دست دادن آب تبلور (در دمای ۵0 ۵0 همراه با کاهش وزن) و تغییر فاز کاندها در دمای
 تعیین دمای پخت سفال، آجر و کاشی به وسیله STA و XRD

بالاتر از 880 درجه سانتی‌گراد، قابل مشاهده است. در نمونه پخته، ديدگاه در 800 درجه سانتی‌گراد با دمای 875 درجه سانتی‌گراد با دمای 900 درجه سانتی‌گراد، تغییر دیدگاه در حدود 99 درصد مشاهده شده است. در این نمونه در دمای 818 درجه سانتی‌گراد، تغییر وزنی از 94 درصد به 96 درصد مشاهده شده است. در دمای 1000 درجه سانتی‌گراد، تغییر قابل مشاهده نشان داده است.

بر اساس نتایج حاصل از آزمایشات STA و XRD (شکل 3)، جذب که پیش‌تر بیابد شده بود، تجزیه کربناتها در 700 درجه سانتی‌گراد، آغاز نمود. در طول بخش فراورده سفالی، کلیسیت در دمای 800 درجه سانتی‌گراد 90 درصد شیوع دیوکسید کلسیم، تجزیه شده و سپس 800 درجه سانتی‌گراد حاصل در ترکیب مجددی به آلومنیوم و سیلیکا حاصل از تجزیه کانی‌های رسی، بیروکسن تولید می‌کند [4].

این انتشارات شبکه غیر قابل اساس‌اندازه است که مانع از پرورش آب و خشک‌های آب و نیز مایع‌آبی کانی‌ها به‌ساتن آن می‌شود. بنابراین تهیه پودر سیمان دارد. آب زدایی ایستایی در جنگ مخلوط صورت می‌گیرد، بیشتر آب زدایی در سطح و نیز بخشی از آب بین لایه‌ها داده می‌شود. با قیمای‌ندوز در دمای 350 درجه سانتی‌گراد، بین 110 تا 140 درجه سانتی‌گراد خروج سریع پودر شده، خروج سریع بین 350 درجه سانتی‌گراد تا 400 درجه سانتی‌گراد می‌گردد. در مقایسه، میکروبرینیا دما تقریباً هستی آبی از دست نمی‌دهد و خروج آب ساختار آن احتمالاً به دلیل دادن بندی درست تری، نازی به دمای بیشتری دارد. بخشی از آب جذب شده سطحی و آب بین لایه‌ای کاولونیت در دمای 110 درجه سانتی‌گراد خروج می‌شود، اما با قیمای‌ندوز آن می‌شود تا دمای 150 درجه سانتی‌گراد و بخش اعظمی آب ساختاری در دمای 750 درجه سانتی‌گراد خروج می‌شود. هنگامی که کاولونیت تا خروج کلیه آب‌های ساختاری گرم شود (به عنوان در حدود 650 درجه سانتی‌گراد)، با قیمای‌ندوز این در جریان کمک می‌کند که میکروبرینیا نام دارد. با گرم کردن کاولونیت، تا بیش از 800 درجه سانتی‌گراد، تغییر دیدگاه از 90 درصد به 98 درصد دیدگاه تغییر می‌دهد و در دمای 1000 درجه سانتی‌گراد، پوشش و فاصله اسپینل است. میکروآب ترکیبی خود را در دمای 1100 درجه سانتی‌گراد، به میکروآب و فاصله اسپینل تبدیل می‌کند.
شکل ۳ نمودار های STA در درجه حرارت های مختلف.
است (کمتر از 450°C) از سوی دیگر عدم تغییر گرمایی در حدود 400°C دمای بخت این آجر بین 400-800°C به موجب بوده است. مواد آلی موجود در خمیر سفال در دماهای 200-500°C کسید شده و به صورت CO_2 خارج می‌شوند. نتایج فرآورده XRD STA 1640
در اتمسفر احیاء گردن گرم شود، در بخش‌هایی از کوره در غیاب اکسیژن، مواد آلی ذغالی شود و کربن به صورت عنصر باقی ماند. در جنبه شرایطی بدن به رنگ‌های خاکستری یا سیاه در می‌آیند. سبب به‌کارگیری از سفال‌های فلزی یا سفال‌های قریب‌البهای سفال‌های خاکستری دارند که نشان می‌دهند اکسایش در هم‌مرافعه موارد بطور کامل انجام نشده است، در نتیجه آج نمود بررسی نیز پخت کاملاً تداشته است. به همین دلیل در آزمایش‌ها از بخشی که دارای پخت کاملاً بوده است نمونه برداری شد.

نتیجه

یکی از مهم‌ترین وسایل برای تعیین دمای پخت سفال مطالعه تغییر فاز کانی‌ها در طول پخت است. با استفاده از روش‌های STA و XRD از تغییرات در زمانه‌های تجزیه کانی‌ها در اثر گرما و تشکیل فازهای جدید در طول ساختار نمونه‌های آماده‌سازی انجام شده، به کمک روش‌های نامبرده، گسترده‌داشتنی مواد مشخصی برای دمای پخت فراورده به دست می‌آید که برای حذف کردن آن و تبدیل شدن به دمای پخت واقعی مواد از روش‌های STA و اسپردروم‌سکوپی موزبایر استفاده کرد. [5] به نظر برسی تغییر فاز کانی‌ها و نیز تعیین دمای پخت سفال‌هایی که بین از 1000°C تا 1500°C شده‌اند بهتر است به موازات روش‌های نامبرده از روش پتروگرافی نیز استفاده شود.

قدردانی

از نظر سازنده سرامیک پژوهشگاه مواد و انرژی در انجام آزمایش‌های STA با وظایف کارگاه سفال سازمان مراتب فرهنگی در تهیه نمونه‌ها و از خانه به‌ویژه سالار و آقای منصور نیز به‌خاطر همکاری‌ها و خدمات سیاست‌گرایی.

مراجع

3. - رمضان‌یاری، ج، جلالیان، ا; مجله بلورشناسی و کانالی شناسی ایران، 1365، 1 و 14، 172.