Geothermometry and physiochemical condition of Qaleh-Zari Cu-Au ore bearing solution based on chlorite composition and fluid inclusion study

Karimpour, M.H.

Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad

Khin Zaw.

Special center for ore deposit and exploration study,
University of Tasmania, Australia

Keywords: Chlorite, ripidolite, geothermometry, Qaleh Zari.

Abstract: Qaleh-Zari mine is the largest Cu-Au vein type deposit in Iran and is located about 182 km south of Birjand (Khorasan province). The ore grade ranges from Cu= 0.5-8%, Au= 0.5-15 ppm, and Ag= 20-150 ppm. Mineralization concentrated in three major veins. Host rocks are mainly andesite to basaltic andesite (Paleocene-Eocene). The main paragenesis is: quartz, hematite (specularite), chlorite, chalcopyrite, ± pyrite, ± Ag-sulfosalts, and ± gold.

Samples were collected from three veins at depth of -70, -100, -135, and -170 meters. At each level, samples are taken every 10m. Chlorites are mainly Fe-rich ripidolite, however a few sampels are brunsvigite and pynchoclorite. Temperature of chlorites formation were calculated based on the Cathelineau and Nieva (1985) equation. The chlorites were formed between 260-300°C. The temperature of chlorite formation is 10-30°C less than temperature measured from fluid inclusion. Using chlorite composition and fluid inclusion data from Qaleh-Zari, new equation is presented for calculation of temperature for chlorite formation. The ore fluid contained

\[\log m\text{H}_2\text{S} = -3 \text{ to } -3.5, \log m\text{H}_2 < -5.5, \log f\text{O}_2 = -30 \text{ to } -29. \]
پژوهشی

داماسنجی و شرایط فیزیکی شیمیایی محلول کانه‌دار بر مبنای کلریت و سیالات در گیر در معدن همس - طلاه قلعه زری

محمدرضا کرمی پور
گروه زمین شناسی، دانشگاه فردوسی مشهد

خنگ‌راو

مرکز ویژه مطالعات و تحقیقات دخایر و اکتشافات معدنی دانشگاه تاسمانیا، استرالیا

چکیده: معدن همس، قلعه‌زهی زیستگرین معدن مس‌رگه‌ای ایران، در ۱۸ کیلومتری جنوب بیرجند واقع شده است. عیار مس بین ۵ تا ۸ درصد، فقره تا ۲۰ تا ۵۰ گرم در تن و طلا تا ۵ گرم در تن است. کانه‌سازی عمداً در سطح رگه متمرکز شده است. غالب سنگ‌های در برگردنه شامل آندزیت تا آندزیت پاژانتی (باستی پاژانتی - آتنوس) است. کانی‌سازی منطقه شامل کوارتز، همباییت (اسپکولاریت)، کلریت، کالکوبیروت، طلا، تان، کانی‌های حاوی نقره و پتیت است.

دما کلریتی ۳۰۰ درجه سانتی‌گراد و درک زیستگرین سه سیالات در گیری کوارتز است. هموتا کالکوبیروت و نیوانه [9] بر اساس کلریتی قلعه‌زهی تغییر می‌کند و فرمول جدید جهت محاسبه دمای تشکیل کلریتی ارائه می‌شود. در محلول کانه‌دار قلعه‌زهی زری تبدیل به شرک زیر نوشته

\[
\log mH_2S / \log mH_2O = -30 - 3T \quad \text{و} \quad \log mH_2O / \log mO_2 = 185 - \text{بوده}
\]

و انتها کلیدی: کلریت، ریبدولیت، قلعه‌زهی، دماسنجی
مقدمه
معدن مس قلعه زری در استان خراسان و در ۱۸۲ کیلومتری جنوب شهرستان برجند واقع شده است. کانسار قلعه زری مهمترین و بزرگترین معدن مس نوع رگه‌ای ایران است. غالب سنگهای در و در جویانه‌های از نوع آتش‌نشانی با ترکیب آندزیت تا بازالت است. در مرکز منطقه، شیل و ماسه سنگهای زوراسیک رخ هم دارند. رگه‌های دارای امتداد شمال غرب - جنوب شرق و نسبت آنها ۸۰/۲۵ درجه به سمت شمال شرق است. عرض منطقه کانه سازی بین ۵۰ تا ۱۲۰ متر است. عیار مس بین ۵ تا ۸ درصد، طلا ۰ تا ۱۵ گرم در تن و نقره ۳۰ تا ۱۵۰ گرم در تن گزارش شده است.[۱] مجموع میزان ذخیره برداشت شده و باقیمانده در حدود ۱۰ میلیون تن برآورد می‌شود.

براساس آثار باقی مانده از برداشت رگه‌ها در مناطق پرگزاری، سرباره‌های نسبتاً زیاد و مواد دیگر، بهره‌برداری در این معدن از ادوار گذشته (زمان شداد) انجام می‌شده است. مطالعات و بهره‌برداری از سوی شرکت ایرانی و زاینی (شرکت لوت و تیزینو زایین) از سال ۱۳۹۹ آغاز و در سال ۱۴۰۱ شرکت ملی صنایع مس ایران سهم شرکت زایینی را خریداری کرد. در حال حاضر شرکت‌های میانکان و صنایع مس ایران از این معدن بهره‌برداری می‌کنند.

روش مطالعه
به منظور مطالعه کانی شناسی (شناسایی کانی‌ها و مطالعه پارازنر)، دماسنجی، و نیز تجزیه کانی‌ها با میکروسکوپ الکترونی، از نظر رگه‌ای شامل نمونه‌برداری شد. نمونه‌برداری از تنها در اعماق ۰-۱ هر عمق به عنوان استاتیا مبدأ انتخاب شد. چاه شماره (۱) (Shaft No.1) در هر عمق به عنوان استاتیا مبدأ انتخاب شد، و نمونه‌برداری در هر عمق به فاصله ۱۰ متر از یکدیگر در امتداد جنوب شرق و شمال غرب صورت گرفت. نمونه‌های برداشت شده از سمت جنوب شرق چاه شماره (۱) با ضریب داده شدند. ابتدا مقاطع R علامت در محدوده شمال غرب با علامت L نمایش داده شدند. ابتدا مقاطع سیقچلی و نازک صنعتی از هم‌سایه نمونه‌ها تهیه شد. و کانی‌های فلزی و غیرفلزی آنها به دقت مورد مطالعه قرار گرفتند. در رگه‌های شماره (۱)، (۲) و (۳) در اعماق مختلف، همراه کوارتز، هماتیت و کالکوپیرید، کانی کلریت مشاهده شدند. با استفاده از میکروسکوپ الکترونی، ترکیب کلریت تعمیم شد و برای کنترل دمای به دست آمده از کلریت، سیالات در گیر کوارتز نیز مورد مطالعه قرار گرفتند.
زمین شناسی

قلمدی ترین و احتمال‌ترین سنگ‌های زیردریایی در منطقه رخنامه درند شیله و ماسه سنگ‌های زوراسیک هستند. این واحد در جنوب و جنوب شرق رگه‌های اصلی واقع شده است (شکل 1). در ارتقادات در رودهای (شرق رستک تکل نژفی) کنگلومرات قرمز رنگ کرتشتاف یافته با صورت ناپایدار روي شیل و ماسه سنگ‌های زوراسیک قرار دارد. در رودهای آب از کنگلومرات آهک ماسه‌ای به ضخامت 200 تا 2 متر قرار گرفته که براساس نوع فسیلهای به کرتشتافانی تعلق دارد. در جنوب ارتقادات در رودهای آب از که توده‌های کرم‌رگن با ضخامت 130 تا 200 متر و با سن بالاترین قرار دارد. فعالیت‌های آتش‌شناختی در این منطقه به بعد از بالینه‌های شرود و در جنوب مرحله تکرار شده است. انواع سنگ‌های پیرکلایستیکی و گدازه در این منطقه شناسایی شده‌اند (شکل 1).

درجه‌ها و گسل‌های منطقه دارای سه روند زیرند [2]

1- روند شمال غرب - جنوب شرق، 2- روند شمال شرق - جنوب غرب و 3- روند شمالی - جنوبی، روند شمال غرب - جنوب شرق قدیمیتر و بخش اعظم کانسار مس - نقره در این ساختارها تشکیل شده است.

کانسار شیاری در منطقه

کانسار شیاری از نوع رگه‌ای است. به‌هم‌برداری از سه رکه‌شماره (1)، (2) و (3) و در اعماق بیش از 200 متری در حال انجام است (شکل 1). طول‌رگه (2) به از 3 کیلومتر است و به‌هم‌برداری در طول کمتر از 2 کیلومتر انجام شده است. طول‌رگه (1) 650 متر و طول‌رگه (3) کمتر از 500 متر است. عرض رگه‌ها بین 75 تا 70 متر تغییر می‌کند. در

[Downloaded from ijcm.ir on 2022-02-05]
شکل 1- نقشه زمین‌شناسی کانسار قلبه زری
جدول 1 - عیار کانسک‌مس قلغمزری

<table>
<thead>
<tr>
<th>جدول 1 - عیار کانسک‌مس قلغمزری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(ppm)</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>264</td>
</tr>
<tr>
<td>620</td>
</tr>
<tr>
<td>255</td>
</tr>
</tbody>
</table>

محل تلاقی گسل‌ها و زونه‌های پازندگی، عرض رگه‌ها بیشتر می‌شود. سه رگه مهم که در آن بهره برداری انجام می‌شود دارای امتیاز دارای شمال غرب - جنوب شرق بوده و شیب آنها بیش از 80 درجه و به سمت شمال شرق است. عبار مس، طلا و سایر عناصر کانسک‌مس قلغمزری در رگه‌های (2) و (3) در بخش‌هایی که در گذشته به‌راشته برداشت می‌شده در جدول (1) آمده است.

عبار طالا فقط در رگه (3) بالاست، اما در رگه‌های (1) و (2) عیار آن یا باین است.

بافت از نوع بر گستنده فضای خالی است. جالانه‌های لاهی و شانه‌های نیز دیده می‌شود. بلوارهای کوارتز نوع شفاف در اندازه‌های بیش از 1 سانتی‌متر بافت می‌شوند.

خلاصه بازاری‌کنی سازی اولیه در کانسک‌مس قلغمزری به‌شرایت زیر است:

هماتیت (اسپکتولیت)، کلریت و کوارتز از اولین کانی‌های منتشر شده است. در ادامه بلواره، کالکوپیریت و کانی‌های حاوی نقره و طلا تشکیل شده‌اند. پیرویت در دمای بالایی به تشکیل شده است.

دگرسانی غالب منطقه از نوع پروپتیت است. کانی‌های سنتی با بطور کامل به اییدوت و کلریت دگرسان شده‌اند. اییدوت علاوه بر متن سنگ‌ها در سطح درد حاصل دنباله و شکستگی‌ها نیز تشکیل شده است. شعاع گستری دنده منطقه پروپتیتی نسبتاً زیاد است. منطقه آرژیلیتی
نمودهای برداشت شده از اعماق ۰-۰.۵، ۰.۵-۱ و ۱-۲ در طول رگه‌های (۱) و (۲) برای ارزیابی کانال‌های خود را در مورد مطالعه قرار گرفتند. نمودهای که حاصل کلریت + هماتیت + کوارتز + کالکوتروپتن + پیریت بودند، برای مطالعه انتخاب شدند. کانال کلریت غالب، همزمان با هماتیت و کوارتز میلور شده است.

کلریتها با استفاده از میکروسکوپ الکترونی نوع SX-50 Cameca در آزمایشگاه مركزي دانشگاه تاسمانیا (استرالیا) تجزیه شدند. در جدول (۲) کلریتها گزارش شده است. توزیع کانیونها و در این کلریتها براساس ۲۸ اکسیون (بدون H2O) و (O, OH) محاسبه شده است که در جدول (۵) امدهاند.

با استفاده از دموهای استاندارد، نوع کلریتها مشخص شدند. کلریتها را از نوع ریدولیت (غنی از آهن) است (شکل ۲- ا). کلریتها رگه (۱) بیشتر از نوع ریدولیت و دو نمونه در محدوده پینکلریت - برانزوریجیت واقع شدند. (شکل ۲- ب). کلریتها رگه (۲) بیشتر از نوع ریدولیت و دو نمونه در محدوده برانزوریجیت واقع شدند (شکل ۲- ب). در مجموع، کلریتها به رگه از نوع غنی از آهن بوده و چکش آنها با هماتیت این موضوع را تأیید می‌کند.

تعیین دماهای تکش تشکیل کانال قلبه‌زیری با استفاده از ترکیب کلریت استفاده از ترکیب کلریت به‌منظور دماسنجی از سروی دانشمندان مختلف از طریق بروز و پیشرفت آزمایشگاهی و انتازه‌گیری ریز است. در مناطق جنوبی ایبیکر، فعال انجام شده است (۷، ۸ و ۹). مطالعات دماسنجی در مناطق با جنس ایبیکر به‌منظور است که با همکاری کلریت برقرار است. در این خصوص رابطه

$T = \frac{0.5826 + A^{IV}}{0.871}$

به منظور تعیین دماهای ترکیب کلریت ارائه گردیده است (۹). میزان AIV در این معادله براساس محاسبه فرول کلریت بر مبنای ۱۴ اکسیون است.
شکل ۲-الف - نموداری از ترکیب کلریتهای رشته (1)

شکل ۲-ب - نموداری از ترکیب کلریتهای رشته (2)

شکل ۲-ب - نموداری از ترکیب کلریتهای رشته (3)
<table>
<thead>
<tr>
<th>اتقاهم جدول ۴</th>
<th>نمودنی</th>
<th>۳-۰، R-۲</th>
<th>۳-۰، R-۵</th>
<th>۳-۱۰، L-۱۰</th>
<th>۳-۱۰، R-۲</th>
<th>۱-۱۰، L-۱۰</th>
<th>۱-۱۰، R-۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۱۵/۲۲</td>
<td>۱۵/۲۳</td>
<td>۱۲/۲۳</td>
<td>۱۰/۲۴</td>
<td>۱۳/۲۴</td>
<td>۱۵/۲۵</td>
<td>۱۵/۲۶</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۱۰/۱۲</td>
<td>۱۰/۱۳</td>
<td>۱۰/۱۴</td>
<td>۱۰/۱۵</td>
<td>۱۰/۱۶</td>
<td>۱۰/۱۷</td>
<td>۱۰/۱۸</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۱/۳۵</td>
<td>۱۱/۳۶</td>
<td>۱۱/۳۷</td>
<td>۱۱/۳۸</td>
<td>۱۱/۳۹</td>
<td>۱۱/۴۰</td>
<td>۱۱/۴۱</td>
</tr>
<tr>
<td>TFeO</td>
<td>۱۰/۱۹</td>
<td>۱۰/۲۰</td>
<td>۱۰/۲۱</td>
<td>۱۰/۲۲</td>
<td>۱۰/۲۳</td>
<td>۱۰/۲۴</td>
<td>۱۰/۲۵</td>
</tr>
<tr>
<td>MnO</td>
<td>۰/۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
<td>۰/۱۷</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۲/۳۵</td>
<td>۱۲/۳۶</td>
<td>۱۲/۳۷</td>
<td>۱۲/۳۸</td>
<td>۱۲/۳۹</td>
<td>۱۲/۴۰</td>
<td>۱۲/۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۳/۳۵</td>
<td>۱۳/۳۶</td>
<td>۱۳/۳۷</td>
<td>۱۳/۳۸</td>
<td>۱۳/۳۹</td>
<td>۱۳/۴۰</td>
<td>۱۳/۴۱</td>
</tr>
<tr>
<td>H₂O</td>
<td>۱۱/۳۵</td>
<td>۱۱/۳۶</td>
<td>۱۱/۳۷</td>
<td>۱۱/۳۸</td>
<td>۱۱/۳۹</td>
<td>۱۱/۴۰</td>
<td>۱۱/۴۱</td>
</tr>
<tr>
<td>جمع</td>
<td>۱۱/۲۴</td>
<td>۱۱/۲۵</td>
<td>۱۱/۲۶</td>
<td>۱۱/۲۷</td>
<td>۱۱/۲۸</td>
<td>۱۱/۲۹</td>
<td>۱۱/۳۰</td>
</tr>
<tr>
<td>Si</td>
<td>۰/۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
<td>۰/۱۷</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>Al'IV</td>
<td>۱۰/۳۵</td>
<td>۱۰/۳۶</td>
<td>۱۰/۳۷</td>
<td>۱۰/۳۸</td>
<td>۱۰/۳۹</td>
<td>۱۰/۴۰</td>
<td>۱۰/۴۱</td>
</tr>
<tr>
<td>Al'VI</td>
<td>۱۰/۳۵</td>
<td>۱۰/۳۶</td>
<td>۱۰/۳۷</td>
<td>۱۰/۳۸</td>
<td>۱۰/۳۹</td>
<td>۱۰/۴۰</td>
<td>۱۰/۴۱</td>
</tr>
<tr>
<td>Mg</td>
<td>۱۱/۲۴</td>
<td>۱۱/۲۵</td>
<td>۱۱/۲۶</td>
<td>۱۱/۲۷</td>
<td>۱۱/۲۸</td>
<td>۱۱/۲۹</td>
<td>۱۱/۳۰</td>
</tr>
<tr>
<td>TFe</td>
<td>۰/۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
<td>۰/۱۷</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>Ca</td>
<td>۱۱/۲۴</td>
<td>۱۱/۲۵</td>
<td>۱۱/۲۶</td>
<td>۱۱/۲۷</td>
<td>۱۱/۲۸</td>
<td>۱۱/۲۹</td>
<td>۱۱/۳۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۰/۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
<td>۰/۱۷</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>Ti</td>
<td>۰/۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
<td>۰/۱۷</td>
<td>۰/۱۸</td>
</tr>
</tbody>
</table>

توضیحات: $TFe = Fe^{3+} + Fe^{2+}$, $TFeO = FeO + Fe_2O_3$ و R و L به روش نمودنی برداری مراجعه شود. $x = [(Fe+Mn)/(Fe+Mn+Mg)] \times 100$
شکل ۳- نمایش دمای تشکیل کلریت‌های رنگ (۱) و (۲) اعماق ۰-۷۰، ۱۰۰-۱۳۵ و ۱۷۰-۱۹۰ متری معدن فلز‌رزی.
جدول 3- دماي تشکل کریت‌های قلبه زری

<table>
<thead>
<tr>
<th>(Fe+Mn)100 (Fe+Mn+Mg)</th>
<th>MgO</th>
<th>FeO</th>
<th>AlIV</th>
<th>T°C</th>
<th>عمق</th>
<th>رکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.2</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>71.2</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>72.1</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>73.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>74.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>75.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>76.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>77.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>78.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>79.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>80.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>81.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>82.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>83.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>84.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>85.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>86.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>87.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>88.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>89.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>90.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>91.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>92.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>93.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>94.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>95.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>96.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>97.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>98.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>99.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
<tr>
<td>100.0</td>
<td>4.22</td>
<td>1.3</td>
<td>0.23</td>
<td>293.6</td>
<td>L-200</td>
<td>1</td>
</tr>
</tbody>
</table>

[Downloaded from ijcm.ir on 2022-02-05]
مقاله دمای سیالات درگیر باکلریت

دمای سیالات درگیر موجود در بالورهای کوارترشان که تشکیل آنها همزمان با باکلریت بوده است در رگه‌های (1)، (2) و (3) اندازه‌گیری شده است (جدول 3). سیالات درگیر اندازه‌گیری شده در سه رگه از نوع غنی از محلول‌اند. دمای اندازه‌گیری شده در این سیالات در تمامی رگه‌ها بیشتر از دمای محاسبه‌شده براساس تركیب کوارتریت است.
فرمول محاسبه دماى تشكیل کلریت که توسط کالیپینو و نیو [9] ارائه شده است براساس دماى محدوده 300 تا 1300 دگر در 260 درجه است. از آنها که کلریتهای قلعه زری در جدول 2 مقایسه دماى سیالات درگیر کارترز با دماى کلریت در معدن قلعه زری انجام گردید.

<table>
<thead>
<tr>
<th>AI<sub>IV</sub></th>
<th>دماى کلریت (سانتی کراد)</th>
<th>دماى سیال درگیر میانکین (سانتی کراد)</th>
<th>عمق</th>
<th>رقم شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/26</td>
<td>285</td>
<td>300</td>
<td>-170 لیتر</td>
<td>1</td>
</tr>
<tr>
<td>1/25</td>
<td>280</td>
<td>310</td>
<td>-170 لیتر</td>
<td>2</td>
</tr>
<tr>
<td>1/24</td>
<td>270</td>
<td>285</td>
<td>-70 لیتر</td>
<td>3</td>
</tr>
<tr>
<td>1/23</td>
<td>282</td>
<td>365</td>
<td>-100 لیتر</td>
<td>1</td>
</tr>
<tr>
<td>1/22</td>
<td>277</td>
<td>310</td>
<td>-135 لیتر</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل 3 نمایش بررسی میزان تغییرات (IV) AI و دما در کلریتهای قلعه زری و کالیپینو و نیو [5]
و ارائه معادله جدید جهت محاسبه دماى تشكیل کلریت
دبیانجی و شیمیایی محلول کانونهادار

دبیانجی بالاتر از ۲۴۰ درجه سانتی‌گراد تشکیل شده‌اند دمای محاسبه شده براساس معادله کاتالینو و نیوا ۱۵ درجه C تا ۳۰۰ درجه C از دمای اندازه‌گیری شده به روش سیالات درگیر است.

به منظور اصلاح این معادله و کاربرد آن برای دمای بالاتر، اطلاعات دماسنگی براساس سیالات درگیر بالور کوارتز و میزان AlIV در کلریت (کوارتز و کوارتز انخابی هم‌مانند آلومینیوم شده‌اند) در معدن قلم‌پری و اطلاعات استفاده شده توسط کاتالینو و نیوا [9] در نمودار (شکل ۴) ترسیم شدند. با استفاده از این اطلاعات بهترین خط ترسیم شد (شکل ۴). معادله‌ای که براساس این نمودار به دست آمده به قرار زیر است.

\[
T = \frac{756}{\text{Fe}^{IV}} - 0.39
\]

فرمول کلریت بر مبنای ۱۴ اکسیژن است.

تغییر شرایط فیزیکوشیمیایی محلول بر پایه مطالعات تجربی - آزمایشگاهی برون‌دراز و اسکات [10] معلوم شد که رابطه (Fe)/(Fe+Mn+Mg) نزدیک یک در میان موفقیت تتراهمال و نسبت Si در سیالات یک در کلریت و نوع اکسیدهای آهن بر قرار است. تغییرات در نسبت Si در کلریت و ارتباط آن با نوع پارازنت سولفیدهای آهن (پیریت و بیروتیت) و اکسیدهای آهن (مجنتیت و هپمانتیت) از سویی دانشمندان متفاوت مطالعه و بررسی شده است [11] [12].

دانشیاران [10 و 11] مطالعاتی برای پیامون کاکی کلریت اندازه‌گیری داده است و با استفاده از معادلات که ارائه داد و به دست آمده در کلریتی ترکیب کلریت، می‌توان دمای FeO2 محلول را محاسبه کرد. ترکیب چند کلریت معدن قلم‌پری در اختیار آنها قرار داده شده که پس از محاسبات از دمای این نمونه‌ها در 315°C تا 375°C سانتی‌گراد و

\[
\log fO_2 = 29 - 30 - 0.3
\]

با توجه به آن، می‌توان 29 - 0.3 = 29.72 گزارش شد و تشکیل کلریت قلم‌پری با همایت شرایط

\[
\log fO_2 = 29 - 0.3
\]

فوق اکسیدهای محلول گرمابی بوده است.

کلریتهای قلم‌پری رابطه مستقیم با درجه (Fe+Mg)/(Fe+Mn+Mg) نسبت نسبت (Fe+Mg)/(Fe+Mn+Mg) نسبت کلریتهای قلم‌پری با میزان Si

\[
\frac{\text{Fe}}{\text{Fe} + \text{Mg} + \text{Mn} + \text{Si}} = 0.5/2
\]

جهان چهارووجهی رابطه عکس دارد. در حالی که 0.56 در نسبت Si=0.5/2 در شرایط 0.56 و در شرایط 0.56.
شکل ۵- نمایش بررسی نحوه تغییرات FeO و دما در کلرینهای قلمه زری
شکل ۲- نمایش بررسی لحاظ تغییرات log m\textsubscript{2}S و log m\textsubscript{2}H

این نسبت به بازیافشایی می‌باشد.

میزان FeO با دمای تشکیل کلریتهای قلعه‌زری رابطه مستقیم دارد، در دمای ۲۹۵ یا ۲۷۰ درجه میزان FeO در حدود ۶/۸ و در دمای ۲۷۰ یا ۲۵۰ درجه میزان FeO با بازیافشایی می‌باشد (شکل ۶). با اضافه از FeO در دمای بالاتر تشکیل می‌شوند از FeO بهتر و آنها که در دمای بالای FeO کمتری برخوردارند (شکل ۵).

میزان MgO با دمای تشکیل کلریتهای قلعه‌زری نسبت عكس دارد، در دمای ۲۹۵ یا ۲۷۰ درجه MgO حدود ۸/۸ و در دمای ۲۷۰ یا ۲۵۰ درجه MgO با بازیافشایی می‌باشد (شکل ۶). میزان فراوانی MgO کلریتهای عكس FeO است. کلریتهای دمای بالا MgO حاوی FeO و دمای پایین حاوی MgO بیشترند (شکل ۶).

با استفاده از نمودار شکل (۵) و با در نظر گرفتن تغییرات که همزمان با کلریت (همالیت و کالکوپیریت) در رگه‌های معدن قلعه‌زری تشکیل شده‌اند معلوم شده که log m\textsubscript{2}S و log m\textsubscript{2}H
نتیجه
کلریت‌های معدن قلعه‌زهی که در منطقه کناری سازی مس هم‌زمان با هم‌اکسید و کوارتز و کالکوپیريت تشکیل شده‌اند از نوع ربیدولیت غنی از آهن و چند نمونه آن از نوع پپیکیت - براتریتریت اند. محلول گرمایی حالت فوق اکسیدان داشته‌است. دمای تشکیل کلریت‌های قلعه‌زهی با استفاده از فرمول کاتلتون و نیوا (9) محاسبه شده و با دمای سیالات دوگیر داخل بلورهای کوارتز مورد مقایسه قرار گرفت. دمای کلریت‌ها در حدود 100°C در 3 کیلومتر از دمای سیالات دوگیر است. فرمول کاتلتون و نیوا بر اساس ترکیب کلریت‌های که در دمای کیلومتر از تشکیل شده‌اند به دست آمده است. با استفاده از ترکیب کلریت‌های قلعه‌زهی و کلریت‌های مطالعه شده توسط کاتلتون و نیوا (9)، نمودار جدید ترمسیم و در این خصوص فرمول جدید زیر برای محاسبه دمای تشکیل کلریت‌ها دمای تا 20°C ارائه شده:

\[T = \frac{1.14}{0.099 - 0.756} \]

ارجاعات:

2. دیره، محمد، (1372) برسی زمین‌شناسی کانی‌شناسی، زئوژئن، میرزا و زئوژئن کانی‌شناسی، مس قلعه‌زهی، 1372.