Zonous Kaolinite bearing clay, an Investigation on its physical-Chemical properties and Industrial applications.

Ebrahimi, K.

Geology Department, Ferdowsi University of Mashhad.

Keywords: Hydrothermal Alteration, Moudle of Rupture (MOR), Methylene Blue Index (MBI), Cation Exchange Capacity (CEC)

Abstract: Zonous Kaolinite bearing clay deposit is made by hydrothermal alteration of volcanic rocks mainly of andesite and dacite. Kaolinite, quartz and calcite are the main mineral compositions. As quartz in the volcanic rocks is cryptocrystalline, it is too difficult to separate it from kaolinite. The physical properties and chemical composition of Zonous ceramic grade kaolinite bearing clay are directly related to its nature and geological formation. The percentage of SiO₂ in Zonous clay is higher but the amount of Al₂O₃ is lower than Diamond kaolinte. For this reason the ceramic products of zonous clays have lower resistance to thermal shocks and module of rupture. High roughness, low plasticity and possible greater deformation during firing (Production of Ceramics) are other reasons for limiting the use of Zonous ceramic grade clays. The percentage of calcium oxide (CaO) in Zonous clay is higher in comparison with Diamond Kaolin but potassium oxide (K₂O) which plays as a flux in ceramic products is lower in zonous. The high percentage of CaO which has a high melting point can raise the viscosity as a result lead to Crack in ceramic products. Finally with these colour properties, the Zonous ceramic grade kaolinite bearing clays, can be used as a filler in paper, paint and rubber industries.
کاربردی
رس کاتولینیتی زنوز، تکثیری بر خصوصیات فیزیکی، شیمیایی
و کاربردهای صنعتی
حسرو ابراهمی
گروه زمین شناسی، دانشگاه فردوسی مشهد

چکیده: کانسار رس کاتولینیتی زنوز در اثر دگرسانی گرماپی سینگهای انسان‌شناختی عمدتاً با ترکیب آندزنتیک و داسیتیک به وجود آمد است. کاتولینیت، کوارتز، و کلسیت مهم‌ترین ترکیب کانتین‌شناختی معدن‌دهی است. کوارتز با توجه به سنگ منشاء ماده‌معدن‌انسان‌شناختی، به صورت نهنگ بلوزون است. و از این جهت فراوری و جداسازی آن از کاتولین به سادگی امکان‌پذیر نیست. خصوصیات فیزیکی و شیمیایی ماده‌معدنی زنوز از مسئولیت ساختاری به سرعت و نحوه بیدار شدن دارد. ترکیب شیمیایی کاتولین فراوری شده زنوز در مقایسه با کاتولین دیاموند انگلستان، که از کینفیت بسیار مطلوبی برای تولید انواع محصولات سرامیکی برخوردار است، دارای درصد اکسید سیلیسیم بیشتر و اکسید آلومینیم کمتری است. از این جهت فراورده‌های سرامیکی تولید شده از ماده معدنی زنوز در مقایسه با کاتولین دیاموند بیشتر و اکسید پتاسیم حاوی هستند. از دیدگاه محدودیت‌های فراورده‌های رسی کاتولین در زنوز است، درصد اکسید کلسیم ماده معدنی زنوز در مقایسه با کاتولین دیاموند بیشتر و اکسید پتاسیم کمتر است. به این ترتیب کانسار و اکسید پتاسیم به داخل نیازمندی بیشتری با می‌شود. کمیت اکسید پتاسیم فراورده‌های رسی کاتولینیتی زنوز در مقایسه با کاتولین دیاموند مناسب‌تر پذیرش تغییر شکل محصولات سرامیکی تولید شده از آن را در بی‌خواید داشت. البته این امر به ویژه در فناوری ساخ اکسید پتاسیم (Filler) در صنایع کاذبی، رنگ، پلاستیک‌ها و استوانک استفاده می‌شود.

واژه‌های کلیدی: دگرسانی گرماپی، مقاومت از هم گیمیختگی (MOR)، شاخص ضبط ابی (CEC)، قابلیت تعادل کاتیونی (MBI)
مقدمه
مواد اولیه معدنی مهمترین عامل کننده کیفیت محصولات صنعتی است که مطالعه دقیق و شناخت کامل خصوصیات فیزیکی، شیمیایی و صنعتی آنها بخشی از ورود به خط تولید مرگوبیت فراورده‌های سرامیکی و ماتلورزی را تضمین خواهد کرد. معدن رس کانون در زنوز که در مجاورت آن كارخانه فراوری ماده معدنی نیز ساخته شده است، با مختصات ۱۵، ۴۵ و ۲۱ طول شرقی و ۲۷ و ۳۲۳ و ۳۸ عرض شمالی در آذربایجان شرقی و در ۸۸ کیلومتری شمال غرب تبریز، ۱۸ کیلومتری شمال شرق مرند و ۶ کیلومتری جنوب دهکده زنوز قرار دارد (شکل ۱).
منطقه معدنی زنوز عمداً از سنگهای آتششناز هم سن سازند کرج و تشكیلات رسوبی از نوع سکس آمکهای منحل، سیل و ماسه سکس پوشیده شده است. در این منطقه بیشتر گدازه‌های تراکتیکی (بشدت دگرسان شده)، آندزیتی و آذرآوری (پیروکلاستیک) با بلورهای خودرنگ، بلورهای شیشه‌ای و هورنبلدهای دگرسان شده مشاهده می‌شوند. فعالیت‌های شدید زمین ساختی در منطقه علاوه بر ایجاد درز و شکاف‌های فراوان، باعث ایجاد دو رشته گسل اصلی با روند شمال غربی- جنوب شرقی، و شرقی- غربی شده است که مسیری برای حرکت محلول‌های گرمابی و تأثیر بیشتر بر دگرسانی سنگهای آتششناز منطقه و تشكیل ماده‌ی معدنی شده‌اند [۱].
شواهد موجود در منطقه از جمله گسترش دگرسانی در ناحیه شکستگی‌ها و گسل‌ها، کوته‌های تأثیر محلول‌های گرمابی بر سنگهای آتششناز است. که در نتیجه فدلسپات‌های دگرسانی، و به کانی‌های رسی‌های در کانولوشن گرماابی و تبدیل شده‌اند. در اثر این دگرسانی، کانی‌های آهن در نیز به هم‌شیبی و لیمونیت تغییر یافته‌اند. در ضمن، بقایی‌های معدنی زنوز به شکل یک عدسی ناقص در امتداد شرقی- غربی و به طول ۷۰۰ متر است. کیفیت ماده‌ی معدنی در جهت مختلف کانسار و نیز از سطح به عمق متغیر است مخصوصاً در نواحی گسل سهولت بیشتر جریان محلول‌های گرماابی و دگرسانی شدیدتر به کیفیت ماده معدنی در این نواحی افزوده است. از طرفی وجود اکسیدهای آهن در نواحی سطحی و پیرین در زیرفا به کاهش کیفیت ماده معدنی شده و سیلیس آزاد و بهای بلورین موجود در زمینه ماده معدنی نیز به سختی آن افزوده است که باعث کاهش می‌رود و مقاومت خاک رس کانونیتی زنوز شده است.
شکل ۱ موضعیت جغرافیایی و زمینشناسی کانسار زنوژ

کانی‌های مانند کلسیت و به مقدار خیلی کم دولومیت نیز به همراه ماده معدنی زنوژ دیده شده‌اند.

کانی‌شناسی زئوستریت و حتی توناز (ذخیره قطعی کانسار با اختلاف فاصله ۱/۶ میلیون تن، ۲۲ میلیون تن و حتی ۵۰ میلیون تن گزارش شده است) ماده معدنی زنوژ را محققین مختلف مورد توجه قرار داده‌اند، اما نتایج انتشار یافته کاملاً متفاوت است. در گزارش‌های بی‌نیاز از پرونده (۱۳۷۳ [۱]) تجزیه کانی‌شناسی (XRD) مسئه نموده‌اند.
جدول 1 نتایج کانیشناسی‌های ماده معدنی زنوز (اقتباس از [1])

<table>
<thead>
<tr>
<th>کانیشناسی</th>
<th>نموده انف. (٪ وزنی)</th>
<th>نموده ب (٪ وزنی)</th>
<th>نموده ج (٪ وزنی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانولونیت</td>
<td>37</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>کوارتز</td>
<td>39</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>آلودگی</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>کل</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

مواد معدنی زنوز ارائه شده است (جدول 1).

در حالیکه در ترکیب کانیشناسی ارائه شده توسط ارزانی (1373) بی تقبل از [1] درصد وزنی کانولونیت 28٪ درصد، کوارتز 24٪ درصد، اپلیت 5٪ درصد و مونت موریونیت 20٪ درصد گزارش شده است که احتمالاً اختلاف فاینی با گزارش عباسی ای جو Andreas به ویژه در مورد درصد کوارتز نشان می‌دهد. اما به طور کلی ترکیب کانیشناسی اصلی ماده معدنی زنوز، کوارتز، کانی های رسی (کانولونیت) و بیونیت و سازنده‌های فرعی آن، هالوکزیت، اسپتنت، اپلیت، کلسیت، لیسیونیت و سیلیزولان نیز گزارش شده است [1]. در گزارش دیگر میانگین تجزیه شیمیایی 55 نمونه سنگ معدن برداشت شده از ذخیره معدنی زنوز به شرح زیر انتشار یافته است (اقتباس از ذخایر شناخته شده کانولون

در ایران ترجمه عباسی بر روی این نتایج انجام شده است که گزارش مجموع (Al2O3+TiO2) با توجه به تأثیر کاملاً متفاوت این اکسیدها در فراورده‌های سرامیکی صحیح نیست.

روش کار

نتایج مطالعات قبلی کانیشناسی، شیمیایی، آزمون‌های سخت‌سازی و حتی پراوردی توناژ ذخیره معدنی زنوز تصویری روش و دقیق از کیفیت و کیمی ماده معدنی در اختیار صنایع سرامیک استفاده کننده قرار نمی‌دهد تا برای با توجه به خصوصیات فیزیکی، شیمیایی و صنعتی قابلیت استفاده کانولونیت، کوارتز، فرمولولندبید، و لوله‌های دمایی و فراورده‌های سرامیکی را تولیدند که از طرف دیگر ضرورت جایگزینی ماده معدنی

\[
\text{Fe}_2\text{O}_3 = 0.88/\% , \quad (\text{Al}_2\text{O}_3 + \text{TiO}_2) = 17.68/\% , \quad \text{SiO}_2 = 69.45/\% , \quad \text{LOI} = 2.78/\% , \quad \text{SO}_3 = 2.12/\% , \quad \text{CaO} = 2.58/\% , \quad \text{MgO} = 5.32/\% \]

لازم به یادآوری است که گزارش مجموع (Al2O3+TiO2) با توجه به تأثیر کاملاً متفاوت این اکسیدها در فراورده‌های سرامیکی صحیح نیست.
زنوز به عنوان تنها کانسرو خاک رس کاتولیکی ایران که امکانات فراوری آن در مجاورت معدن یشپیچی شده است، به چاپ کانالون‌های گران قیمت وارداتی، مثل کانالون دیاموند انگلستان، کاملاً مشهود است. از این رو، به منظور شناخت قطعات کانی شناسی، زئوژئی و خصوصیات شماهی معدنی زنوز به همت بذرگریان واحدهٔ تولید سرامیک ایران (چینی مقصد) از هر یک از فراورده‌های معدنی زنوز یک تن به عنوان نمونه برداشت شد. نمونه‌ها بعث ترتیب با علائم ZK کلوخه‌ای (ماده معدنی زنوز پس از فراوری به روسر خشکی معرفت به زنوز ZM میکرونسی) و ZR (مادهٔ معدنی زنوز پس از انجام فراوری به روسر تر معرفت به زنوز مشخص شدند. آناالیزهای کانی شناسی، زئوژئی و آزمونهای صنعتی Dorst نمونه‌ها با همکاری گروه پژوهشی در کارخانه‌های سازندهٔ ماسین آلات سرامیکی آلمان و سکته‌ی نهایی و تولید مواد اولیه سرامیک انگلستان انجام و با نتایج آناالیزهای کانول Rostowrack GR (Goonvean & Rostowrack) GR (Goonvean & راهنمای انگلستان مقایسه کردیم که بر اساس آن فورمولندی بدنه و لوازم چینی مقصد طراحی شد. برای این منظور نمونه‌ها پس از انجام مرحله خرداری به آسیاب‌گلوله‌ای به مدت 10 ساعت، تبدر به دوجاب شد، سپس به منظور اختلاف بیشتر و افزایش چسبندگی‌های لازم (Binder) وارد می‌شد. سپس برای دانه‌های شنیده بود، با استفاده از صافی تحت فشار آب گیری شد. سپس برای دانه‌های شنیده آن را در یک خشک کننده افشانه‌های قرار داده شد. محصول دانه‌های شنیده در یک دستگاه پرس ایزوستاتیک به صورت چسبنده‌هایی در آمدند و در آخر پخته شدند.

بحث و برداشت
الف) کانی شناسی و زئوژئی
تکیه کانی شناسی و شیمی انواع نمونه‌های همگن شده ماده معدنی زنوز که با روشنایی XRF و XRD مورد بررسی قرار گرفتند و مقایسه آنها با نتایج آنالیز انواع کانالون دیاموند انگلستان در جدول‌های 2 و 3 ارائه شدند.
جدول ۲. مقایسه نتایج کانی شناسی مواد معدنی حاوی کاتولن زنوز و کاتولن دیاموند انگلستان

<table>
<thead>
<tr>
<th>Mineralogy</th>
<th>Zonous Kaoline</th>
<th>Diamond Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolinite</td>
<td>35.2</td>
<td>84</td>
</tr>
<tr>
<td>Mica</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Feldspar</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Composition</td>
<td>Quartz</td>
<td>59.5</td>
</tr>
<tr>
<td>%</td>
<td>Calcite</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>other phyllosilicates</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>impurities</td>
<td>0.3</td>
</tr>
</tbody>
</table>

جدول ۳. مقایسه نتایج ترکیب شیمیایی مواد معدنی حاوی کاتولن زنوز و کاتولن دیاموند انگلستان

<table>
<thead>
<tr>
<th>Oxides</th>
<th>ZK</th>
<th>ZM</th>
<th>ZR</th>
<th>DR</th>
<th>DP</th>
<th>DTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.81</td>
<td>70.05</td>
<td>61.41</td>
<td>48.9</td>
<td>48.7</td>
<td>48.6</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.02</td>
<td>18.44</td>
<td>26.77</td>
<td>35.4</td>
<td>35.6</td>
<td>35.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.28</td>
<td>0.32</td>
<td>0.30</td>
<td>0.55</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>TiO₂</td>
<td>&lt;0.05</td>
<td>&lt;0.05</td>
<td>&lt;0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CaO</td>
<td>0.51</td>
<td>1.45</td>
<td>0.56</td>
<td>0.16</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>0.31</td>
<td>0.15</td>
<td>0.08</td>
<td>0.37</td>
<td>0.36</td>
<td>0.32</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.12</td>
<td>0.14</td>
<td>0.09</td>
<td>3.1</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.14</td>
<td>&lt;0.05</td>
<td>&lt;0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>LOI</td>
<td>6.25</td>
<td>8.17</td>
<td>10.29</td>
<td>11.30</td>
<td>11.40</td>
<td>11.50</td>
</tr>
</tbody>
</table>

(DR = Diamound Royale, Dp = Diamound porcelain, DTW = Diamound Tableware)
ترکیب شیمیایی نظری کاتلون $\text{Al}_4\text{Si}_4\text{O}_{10}\text{(OH)}_8$ مشتمل بر 39.5 درصد اکسید آلومینیم، 54/6 درصد اکسید سیلیس و 12 درصد آل بوده است. اما همیشه مقایسه ناخلاستی که عمداً آز اکسیدهای بوتاسیم، سدیم، کلسیم، منزه، آهن و تیتانیوم انجام نمود.

در ترکیب شیمیایی کاتلون وجود دارد.

نقش اکسید آلومینیم در ترکیب شیمیایی کاتلون موجب افزایش مقاومت سرامیک‌های تولید شده از آن در مقابل شوکهای گرمایی، فشاری، کششی و ... می‌شود. اکسید سیلیس پیوند مستحکمی بین ذرات کاتلونیت در بدن‌های سرامیکی ایجاد می‌کند و نیز در خشک‌شدن و شفافسازی آن را افزایش می‌دهد. کاتلون فراوری شده زنوز ایران در مقایسه با کاتلون دیاموند حاوی مقادیر کمتری از $\text{Al}_2\text{O}_3$ است که این کاهش از تبادل مستقیم با افزایش درصد سدیم موجود در ماده معدنی زنوز دارد.

(جدول 3 و شکل 26)

میزان اکسید بوتاسیم ($K_2\text{O}$) به عنوان ماده‌ای منفی و گذارنده (Flux) در ترکیب شیمیایی رس کاتلونیتیت زنوز در مقایسه با کاتلون دیاموند انگلستان کمتر است، ولی درصد اکسید سدیم ($Na_2\text{O}$) که باعث افزایش روانی یا گرانشی و در نتیجه تغییر شکل محصولات سرامیکی می‌شود در نمونه‌های فراوری نشده زنوز ایران بیشتر و در نمونه‌های فراوری شده زنوز کمتر از اکسید سدیم موجود در کاتلون دیاموند انگلستان است. (جدول 3 و شکل 26)

وجود عناصر آلکالین خاکی ($\text{MgO, CaO}$) در کاتلون باعث ترکیب فراورده‌های سرامیکی تولید شده از آن می‌شود. درصد اکسید کلسیم در ماده معدنی زنوز که از دگرسانی عمده‌ای پلاژیوکلازهای سنگ مادر متشکل گرفته است در مقایسه با کاتلون دیاموند بیشتر و اکسید منزه در نمونه‌های فراوری زنوز کاهش می‌یابد (جدول 3 و شکل 26). که مقدار آن در نمونه‌های فراوری شده زنوز کاهش می‌یابد (جدول 3 و شکل 26).

اکسیدهای آهن و تیتانیوم، ترکیباتی رنگین و مزاحم در تولید فراورده‌های سرامیکی و وجود معدنی زنوز ایران در مقایسه با کاتلون دیاموند انگلستان به ترتیب دارای درصد اکسید تیتانیوم بیشتر و اکسید آهن کمتری است ولی به هر حال این تغییرات گسترده بسیار نزدیکی را نشان می‌دهد (جدول 3 و شکل 26).
شکل 3 تغییرات شیمیایی موجود در نمونه‌های رس کانولیتی زنوز ایران و کانولن دیاموند آنگستان.

(ب) آزمون‌های فیزیکی و صنعتی

خواص فیزیکی و صنعتی کانولن از مهم‌ترین عوامل مورد توجه کننگان سرامیک است. این خصوصیات شامل موسمانی، مقاومت، توزیع اندازه‌ ذرات، قابلیت تبادل کاتیونی، گستردگی مسطح، و سرعت خشک شدن است. تمامی این خصوصیات ارتباطی نزدیکی به کانن شناسی و ترکیب شیمیایی ماده معدنی دارد. رنگ پس از بخت مواد اولیه سرامیکی از اهمیت بالایی برخوردار است. این خاصیت عمداً توسط میزان اکسیدهای آهن و تیتانیوم موجود در خاکهای رس کنترل می‌شوند. کانولن به همراه مواد معدنی دیگری جوی تناسبی فلزات و کوارتز آسیاب و مخلوط می‌شود تا به عنوان ماده اولیه صنایع سرامیک مورد استفاده قرار گیرد. در صنایع سرامیک (چینی - کاشی) اصولاً کانولن با استیلی خاصیت موسمانی بالا و رنگ بخش مناسبی بالا که کاهش میزان اکسیدهای آهن و تیتانیوم در مواد اولیه خونی، سفید و شفافیت رنگ فراورده‌های سرامیکی را تضمین می‌کند. جدول شماره 4 گستره استاندارد و ایده آل
جدول ۳ خصوصیات فیزیکی استاندارد خاک‌های رس در صنایع سرامیک

<table>
<thead>
<tr>
<th>خصوصیات فیزیکی استاندارد</th>
<th>شاخص</th>
<th>(lb/in²)</th>
<th>(meq/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>موادّه معدنی</td>
<td>30-70</td>
<td>70-95</td>
<td></td>
</tr>
<tr>
<td>کاهش موسمانی است. افزایش ZK در به دلیل وجود مواد آلی در مادّه معدنی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>موادّه معدنی</td>
<td>مقدار MOR</td>
<td>قابل ملاحظه‌ای برخوردار است. این کاهش به دلیل ازدیاد سیلیس در مادّه معدنی</td>
<td></td>
</tr>
</tbody>
</table>
شاخص میلیان آبی (MBI) روش سریع و مطمئنی در برآورد قابلیت تبادل کاتیونی
خاک‌های رس است. میزان ارتباط مستقیمی به مساحت دانه‌ها و CEC
ارتباط مستقیمی به مساحت دانه‌ها و CEC [2 و 7] مساحت و رعشه‌های کاولون توسط میزان جذب گاز از طریق مقطع ذرات جامد
کانی اندازه‌گیری می‌شود و ارتباط مستقیمی به طبیعت رس و توزیع دانه‌بندی آن دارد.
سرعت خشک شدن تعیین سرعت از دست دادن رطوبت دوگاه‌های سرامیکی و
تبدیل آن به خمیر مناسب برای قالب‌گیری است. از عوامل مهم در تولید بدن‌های
سرامیکی مخصوصاً جنسی‌های بهداشتی است. خشک شدن سریع‌تر اثر توزیع
دانه‌بندی درشت‌تر و کم‌مود وجود امسکنتی در خاک‌های رس اثربخش می‌باشد. صنایع
سرامیکی مواد اولیه خود را به اندازه دانه‌بندی کمتر از 2 میکرون به منظور تأمین مقاومت
لازم جهت بهره‌برداری سرامیکی انتخاب می‌کنند.
سرعت خشک شدن دوگاه‌های سرامیکی مواد معدنی زنوز به طور قابل
ملاحظه‌ای از نمونه دیاموند انگلستان و تغییرهای مشابه دیگر بیشتر است که این در اثر
توزیع دانه‌بندی درشت‌تر و زیری ماده معدنی زنوز است. این افزایش در اثر وجود
کوارتز نهان بلورین به صورت آزاد و در زمینه ماده معدنی است که باعث کاهش
افزایش سرعت خشک شدن، کاهش چسبندگی، و کاهش MBI ماده معدنی زنوز در
مقاومه با دیاموند انگلستان می‌شود. اندازه دانه‌بندی بیشتر از 2 میکرون باعث کاهش
مقاومت بندنه سرامیکی خواهد شد. در جدول 5 خصوصیات فیزیکی انواع فرآورده‌های
کاولونی بزرگ‌تر از انواع کاولون دیاموند انگلستان مقاومه می‌شوند.
خصوصیات فیزیکی، ترکیب شیمیایی و کلی شناسی فرآورده‌های کاولونی بزرگ‌تر
استفاده در صنایع سرامیک ارتباط‌های مستقیمی را با یکدیگر نشان می‌دهند. به عنوان
مثال مقاومت بندنه‌های سرامیکی (MOR) با افزایش قابلیت جانشین کاتیونی در کاولون

جدول ۵ مقایسه خصوصیات فیزیکی انواع رس‌های کانولن دار زنوز و انواع کانولن دیاموند

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>units</th>
<th>ZK</th>
<th>ZM</th>
<th>ZR</th>
<th>DR</th>
<th>DP</th>
<th>DTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOR</td>
<td>lb/in²</td>
<td>655</td>
<td>54</td>
<td>96</td>
<td>500</td>
<td>450</td>
<td>350</td>
</tr>
<tr>
<td>Casting rate</td>
<td>mm²/min</td>
<td>-</td>
<td>44</td>
<td>7.4</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Cps</td>
<td>70</td>
<td>130</td>
<td>170</td>
<td>2000</td>
<td>1850</td>
<td>1000</td>
</tr>
<tr>
<td>Fired properties</td>
<td></td>
<td>1350°C</td>
<td>94.2</td>
<td>94.3</td>
<td>97.6</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>MBI</td>
<td>mgequiv/100gm</td>
<td>8.1</td>
<td>2.1</td>
<td>2.1</td>
<td>6.25</td>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Soluble salts</td>
<td>ppm</td>
<td>441</td>
<td>567</td>
<td>518</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Particle</td>
<td>+53μm%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Size</td>
<td>+20μm%</td>
<td>18</td>
<td>1.1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>+10μm%</td>
<td>40</td>
<td>13.3</td>
<td>1.7</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-2μm%</td>
<td>20</td>
<td>18</td>
<td>45.5</td>
<td>60</td>
<td>53</td>
<td>50</td>
</tr>
</tbody>
</table>

ارتباط مستقیمی دارند، به نحوی که با افزایش MOR کانولن (MBI) چینی (سرامیک) تولیدی افزایش خواهند یافت (شکل ۱). تأثیر وجود اسکلت در خصوصیات فیزیکی و شیمیایی کانولن مورد استفاده در صنایع سرامیکی در شکل ۳a-f ارائه شده است [۷]

نتیجه

خواص فیزیکی و شیمیایی ماده معدنی زنوز ارتباط مستقیم و نزدیکی به کانال شناسی و نحوه پیدایش آن دارد. علاوه بر کانولن (1/5)، مقدار قابل ملاحظهای کوارتز بهره بلورین (1/6)، کلسیت (2/3) و سیلیکات‌های ورقه‌ای دیگر (2/5) در ترکیب کانال شناسی ماده معدنی وجود دارند. افزایش قابل توجه درصد SiO2 کانال شناسی ماده معدنی وجود دارند. افزایش قابل توجه درصد Al2O3 نیز وجود دارد. کانال شناسی ماده معدنی حاصل که طبیعی با کاهش فراوان درصد Al2O3 موجود در رسه‌های کانولنی زنوز ایران در مقایسه با کانولن دیاموند انگلستان، باعث کم شدن مقاومت فراورده‌های سرامیکی آن و در مقایسه شکوهای گرمایی و تحمل خمیدگی، و از طرف دیگر...
شکل ۳ ارتباط بین خصوصیات فیزیکی، تركیب شیمیایی، و کانی شناسی کاتولیتی مورد استفاده در صنایع سرامیک.

افراش SiO۲ باعث زیاد شدن زیری و کاهش موسائی مواد اولیه سرامیکی زنوز شده است. کاهش قابل توجهی داشته بدنی کمتر از ۲ میکرون رس های کاتولیتی زنوز که به درصد بالایی کوارتز نهان بلورین آزاد در ترکیب ماده معدنی ارتباط دارد دارد. نیز باعث کاهش موسائی و مقاومت می شود و زیری آن را افزایش می دهد. خواص رنگی ماده معدنی زنوز ایجاد آن است که علاوه بر فروآورده‌های سرامیکی، استفاده از آن را به عنوان یک کننده در صنایع رنگ، کاغذ، لاک‌سیک، و پلاستیک امکان‌پذیر می‌سازد.
تشریح و قدردانی

وظیفه خرده‌فروش مسئول که از جناب آقای ایمانی مدیر عامل محترم شرکت تولیدی چینی مقصود به خاطر حمایت و تامین منابع این طرح پروژه‌های سباستگازاری نماک، و نیز از جناب آقای دکتر مظاهری و جناب آقای دکتر رزمندا به خاطر مطالعه متن مقاله و رهیم‌های علمی ارزشمندی شاکر باشم.

مراجع

1- قربانی، منصور- ارزانی کاو. 1372 کاولن و رسهای نسوز، طرح تدوین کتاب زمین شناسی ایران، سازمان زمین شناسی کشور. صفحه 111-116


