Investigation of parameters affecting zeolite NaA crystal size and morphology

I - The influence of reactants composition ratios on zeolite A synthesis

Aghabozorg, H.R., Ghassemi, M.R., Salehirad, F. and Attarnejad, M.A.
Catalyst Department, Research Institute of Petroleum Industry

Keywords: Zeolite A, Synthesis, Crystal size, Morphology, Alkalinity, Aging

Abstract: Crystal size and morphology of zeolite NaA have an important role in its specific use in the industries. Thus, investigation of parameters which influence crystal size and morphology of this compound during the synthesis is very important. Parameters such as intensity of mixing, temperature and aging time of the gel preparation, crystallization temperature and composition ratios are important in this case. In this study, the influences of $\frac{SiO_2}{Al_2O_3}$, $\frac{Na_2O}{Al_2O_3}$ and $\frac{H_2O}{Al_2O_3}$ ratios and impurity in the gel composition on zeolite NaA crystal size and morphology are investigated. Characterization techniques such as X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) have been used for phase identification, particle size and morphology of crystals throughout this work.
پژوهشی

بررسی اندازه و ریخت شناسی بلورهای زئولیت

بخش 1 - اثر تغییر نسبت واکنشگرهای در سنتر

حمیدرضا آقابزرگ، محمدرضا قاسمی، فتح‌الله صالحی راد

محمدرضا عطایزاد

پژوهشی کاتالیست، پژوهشکده پالایش، پژوهشگاه صنعت نفت

چکیده: اندازه و ریخت شناسی دانه‌های بلوری زئولیت NaA نشان دهنده تعیین کننده در کاربردهای ویژه آن دارد. لذا بررسی عامل‌های موثر در اندازه و ریخت شناسی دانه‌های بلوری در حین سنگین این ترکیب از اهمیت زیادی برخوردار است. عامل‌هایی مانند میکرو‌سمتی از قبیل همبستگی، دما، تهیه زل و بلوری شدن، زمان ماندن، نسبت واکنشگرها در این امر می‌توانند شرکت داشته باشند. در این‌جا موارد بررسی قرار گرفته‌اند. نتایج به دست آمده نشان داده که این عامل‌ها در اندازه و ریخت شناسی دانه‌های بلوری زئولیت NaA مؤثرند. برای شناسایی فاز زئولیت NaA از بازیابی ایکس رادیوگرافی (XRD) استفاده شده است.

واژه‌های کلیدی: زئولیت NaA؛ سنتر؛ اندازه بلور؛ مورفولوژی؛ قلب‌ای بودن

[Downloaded from ijcm.ir on 2022-01-14]
مقدمه

ژئولیت A یکی از زئولیتهای سنتری است که دارای کاربردهای متنوعی است. ریخت شناسی این نوع ژئولیت نشان دهنده کندالایی در کاربردهای مورد نظر آن دارد. این ماده به عنوان گیرنده سختی آب در شرایط مختلف استفاده می‌شود. اما شکل مکعبی کامل دانه‌های بلواری این نوع ژئولیت به سختی از آلاینگ بارجه جدا می‌شود و در نتیجه به آن آسیب می‌رساند. لذا شکل‌گیری مناسب خواهد بود که از حالت مکعبی کامل خارج و به شیب کروی تبدیل شود. بررسی و مطالعه دقیق عامه‌ای موثر در تغییر شکل دانه‌های بلواری ژئولیت NaA می‌تواند منجر به تغییراتی به سطح‌های مناسب برای تهیه آن با شکل‌های متفاوت شود که در جهت استفاده بهینه از این ترکیب ضروری است.

علاوه بر موادی از قبل دما و سرعت هستند و منگ می‌گیرند تهیه زئول و دمای باری که در سنتر ژئولیته موثرند، نسبت واکنش‌گرهای اثر ناخالصی و میزان قلیاییت نیز در سنتر NaA تأثیر دارند. در این کار تحقیقاتی نسبت‌هایи $\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3}$ و $\frac{\text{Na}_2\text{O}}{\text{Al}_2\text{O}_3}$ مطالعه گرفته‌اند.

روش کار

در این کار تحقیقاتی برای سنتر ژئولیت NaA از آلومینیم هیدروکسید، سدیم هیدروکسید و سدیم سیلیکات (آب شیشه) تجربی داخلی استفاده شد. تمام واکنش‌گرهای تهیه شده با استفاده از روش‌های UOP (82-85 و 85-87) تجزیه شدند. از مواد خالص آزمایشگاهی، عنی آلومینیم هیدروکسید و سدیم هیدروکسید (BDH) در بافت سنتر برخی از نمونه‌ها استفاده شد.

برای شناخت ژئولیت NaA ابتدا سدیم آلومینات به روش توصیف شده در مرجع [3] تهیه شد. برای تهیه ژئول محلولهای سدیم سیلیکات و سدیم آلومینات با توجه به SiO_2, Al_2O_3 و Na_2O مورد نظر درگستره 0-6 در درون راکتور به کمک همزن مکانیکی (500-1000 دور در دقیقه) مخلوط شدند. زن تهیه شده به مدت 0-10 دقیقه همزمده شد. سپس در دمای 97-95°C، 85-80 و به طوری که $p\text{H}$ محلول زیر 0.5 مداوم یابند.
جدول ۱: گسترده عنصرسنجی واکنشگرها در برخی از آزمایش‌های انجام شده

<table>
<thead>
<tr>
<th></th>
<th>Al_2O_3</th>
<th>SiO_2</th>
<th>Na_2O</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲-۱/۳</td>
<td>۱/۲-۱/۳</td>
<td>۱/۲-۱/۳</td>
<td>۱/۲-۱/۳</td>
<td>۱/۲-۱/۳</td>
</tr>
<tr>
<td>۱/۴-۱/۳</td>
<td>۱/۴-۱/۳</td>
<td>۱/۴-۱/۳</td>
<td>۱/۴-۱/۳</td>
<td>۱/۴-۱/۳</td>
</tr>
<tr>
<td>۱/۸-۲/۵</td>
<td>۱/۸-۲/۵</td>
<td>۱/۸-۲/۵</td>
<td>۱/۸-۲/۵</td>
<td>۱/۸-۲/۵</td>
</tr>
</tbody>
</table>

* (۲/۷, ۳/۷, ۴/۷, ۵/۷)

صفایی به حدود ۱۰ تقلیل یافت.

برای بررسی عامل‌های مؤثر در ریخت شناسی و اندازه ظرتی زئولیت NaA، آزمایش‌های متعددی انجام گرفت. نسبت‌های مولی واکنشگرها در جدول ۱ آورده شده‌اند. شناسایی فاز زئولیت با استفاده از پراکنده ایکس (XRD) با دستگاه PC-APC مجهر به نرم افزار JCPDF اطلاعاتی انجام شد. بررسی اندازه و ریخت شناسی بلورها با میکروسکوپ الکترونی (SEM S-360/Stereo scan 360 Cambridge Instruments) بحث و بررسی

یکی از عامل‌هایی که در بررسی و مطالعه قرار گرفت تأثیر میزان قلیاییت بر ریخت شناسی و اندازه بلور زئولیت NaA بود. برای انجام این کار غلظت‌های متقارنی از هیدروکسید سدیم در محدوده‌ای و سیس بررسی شدند. نتایج به دست آمده نشان داد که میزان قلیاییت زیاد سبب به وجود آمدن فازهای دیگر زئولیت‌های همراه با فاز زئولیت NaA می‌شود. اگر که کم‌تر از حد مورد شناسایی می‌شود و همواره سریع تر شدند. در شکل ۱ مورد مقایسه قرار گرفته است. نشانه خاصی ملاحظه نمی‌شود. این بلند بوده با نتایج حاصل از آزمایشات و همکاری با سرمایه‌دارید. تجربیات انجام شده توسط آنان وجود ناخالصی سودایی و زئولیت P را به همراه زئولیت A نشان می‌دهد [2]. میزان فاز
شکل ۱ مقایسه الگوهای پرتو ایکس زئولیتهای NaA در شرایط یکسان (با مقدارهای متفاوت Na_2O، بالا نمونه حاوی ۳ مول Na_2O، ج - نمونه حاوی ۲ مول Na_2O، د - نمونه حاوی ۱/۸ مول Na_2O، E - نمونه حاوی ۱ مول Na_2O)

ناخلصی در سیستم را با تغییر در مقدار آب می‌توان تغییر داد. باید به این که با تغییر میزان آب زمان بلوری شدن تغییر خواهد کرد [۳]. تأثیر مقدار آب را می‌توان در شکل ۲ مشاهده کرد. این شکل الگوهای XRD دو نمونه که در شرایط یکسان و با مقدار آب مشابه کرده‌اند.

شکل ۲ مقایسه الگوهای پرتو ایکس زئولیتهای NaA ستونی با درصد مولی آب متفاوت در ترکیب ZL، الف - ۹۵ درصد مولی آب نسبت به کل واکنشگرها، ب - ۹۵/۵ درصد مولی آب نسبت به کل واکنشگرها.
شكل ۳ عکس‌هایی از دانه‌های بلوری زئولیت A استتخت شده با میکروسکوب الکترونیک
الف - نمونه استتخت شده با ۲/۷ مول Na2O
ب - نمونه استتخت شده با ۲ مول Na2O
ج - نمونه استتخت شده با ۴/۱ مول Na2O
متفاوتی سنتر شده‌اند، ۳/۴ درصد مولی آب ناخالصی وجود دارد و ۱/۵ درصد مولی آب، این ناخالصی حذف شده است. بررسی الگوهای برای پروتئین X-شدن داد فاز ناخالصی از نوع هیدروکسی سودالیت (HS) است. با توجه به اینکه فاز یاد شده فازی متراسکم تر از Zنولیت A است و این نوع فازها، اغلب در سیستم‌های با آب کمتر تشکیل می‌شود، آنها تئوری به دست آمده قابل توجهی است. تغییر اندوزه دانه‌های بلوری و ریخت شناسی آنها برای تعدادی از نسخه‌های سنتر شده در شکل‌های ۳ و ۴ قابل مشاهده است. در مجموع تأیید به دست آمده‌هایی از آن است که هر چه می‌خیابی قلیایی تر شود، اندوزه‌های بلوری کوچکتر و ریخت شناسی آنها تغییر می‌کند. این پدیده‌ای از محققین در مورد [۸] و Zنولیت X [۹] تجربه کرده‌اند. آنها ادعا کرده‌اند که با قلیایی شدن باقی می‌ماند، درازا برای نظارتی کوچکتر می‌شوند. کوچک‌تر شدن بلورها می‌تواند بیانگر این نشان دهنده که با افزایش میزان قلیایی سرعت تغییرات شکل خطوطی زیاد می‌شود. آنتونیک و همکارانش [۹] نشان دادند که تأثیر قلیایی در یک مجموعه ناپوشسته سنتری بر سرعت بلوری شدن به غلظت OH در "ز" پستگی دارد.

تأثیر میزان آلومنیم در مخلوط واکنشی به اندازه دانه‌های بلوری محصول نیز مورد مطالعه و بررسی قرار گرفت. نتایج به دست آمده نشان می‌دهد که با افزایش غلظت آلومنیم در "ز"، دانه‌های بلور در محصول بزرگ‌تر می‌شوند. بدین‌종ی در مدل یا مشاهدات رومانیکف و همکارانش در ارتباط با سنتر Zنولیت [۱۰] و کمبود و همکارانش در ارتباط با سنتر Zنولیت بنا [۱۱] قابل مقایسه است. تصویربرداری گرفته شده به وسیله میکروسکوپ الکترونی از دو نمونه سنتری در شکل ۵ نشان داده شده‌اند. چنین به NaA ملاحظه می‌شود که با افزایش غلظت آلومنیم، بلورهای مکعبی Zنولیت به نی‌شوند.

توصیه می‌شود با افزایش غلظت آلومینیم، بالهای بلورهای مکعبی Zنولیت به نی‌شوند.

برداشت

نتایج حاصل از آزمایش‌های انجام شده و بررسی عامل‌های مؤثر بر اندازه و ریخت شناسی دانه‌های بلوری Zنولیت را می‌توان به صورت زیر خلاصه کرد:

۱- افزایش میزان سود در محیط واکنش باعث کوچک‌تر شدن و تغییر شکل دانه‌های

NaA
پلوری از حالته مکعبی کامل به سمت کروی می‌شود. همچنین افزایش بیش از حد سود به محيط واکنش ناخالصی را بالا می‌برد. ۲- افزایش میزان آلومینیم در واکنش‌های اند واحع ترکیب ذل موجب بزرگ شدن اندازه‌های پلوری زئولیت NaA و تغییر شکل پلورها از حالت مکعبی کامل به سوی مکعبهای با بالهای بیه می‌شود.

![عکس](الف)

![عکس](ب)

شکل ۴ عکسهایی از دانه‌های پلوری زئولیت NaA با میکروسکوپ الکتریکی الپ- نمونه سنتر Na۲O / Na۲O ۷/۳ مول. شده با ۳ مول Na۲O. ب- نمونه سنتر شده با ۷ مول Na۲O.
تشکر و قدردانی

بدين وسیله از كليه دوستان در راحدهاي كتاليست و تجریه دستگاهي پروهشگاه
صنعت نفت به ویژه آفیان علي عباسی و رحمت ارا رضايی که در انجام این کار
تحقيقاتي ما را ياری كردن، تشکر و قدردانی مي شود.

3. قاسمی، م. ر.، عطزان، م. ع.، مسعودیان، س. ک. و آقا‌برگر، ح. ر. (1377) مجموعه مقالات نهمین همایش نفت و گاز پتروشیمی، تهران.

