Mineralogy of brucite bearing marbles, eastern margin of Shirkuh batholith (west of Yazd province)

Kohsari, A.H
Department of Mining, Yazd University, kohsary@yahoo.com

Key words: skarn-marble, brucite, hydromagnesite.

Abstract: Igneous bodies in Manshad-Taft fault zone are intruded into Shirkuh granitic batholithic basement. They also cause different skarn-marble mineralization in dolomitized limestones which are covered granitic basement. Skarns are composed of variety of minerals. Marbles consist of various minerals such as brucite, forsterite, diopside, periclase, talc, calcite, dolomite, and hydromagnesite. Petrographic and geochemical data have revealed that there is several stages during the formation of marble minerals. At the first stage, anhydrous minerals formed, then followed byhydrous assemblage. Generation of brucite occurs at the second stage and is due to late hydrothermal system with low XCO₂ and high XH₂O fluids. Hydromagnesite deposition is occured by oxidation of brucite.
کانی شناسی مرمرهای بروسیت دار، حاشیه شرقی باتولیت شیرکوه (غرب استان یزد)

امیر حسین کوهرسیری
دانشکده مهندسی معدن - دانشگاه یزد

چکیده: در استادی زون گسلی موسوم به مهراب دشت مواد معدنی پیوسته با کافی بار، سنگ‌های درون‌سیت شیرکوه را در تور استان یزد و باعث اسکارن - مرمرسازی متنوعی دو واحد به‌طور کلی در شمال و مرکز شیرکوه بنا گردیده‌اند. اسکارن‌های دو واحد از یکی از کانی‌های ضروری ترینیتی به‌طور عمده توسط اکسیداسیون مشخص هستند. داده‌های سنگ‌شناسی و زئوسیمیایی مؤثر مراحل جنگ‌گانه در شکل‌گیری کانی‌هاست. در اولین مرحله شکل‌گیری، کانی‌های یک آب و بودنیان آن مجموعه‌های آب‌دار شکل کرده‌اند. پیدایش بروسیت در مرحله دوم ناشی از یک سیستم کرمیکی تاخیری با یکی از XCO₂ با پایین و XH₂O با لایه‌های است. اکسایش تاخیری منجر به بهبود هیدرومیتی از میانه بروسیت شده است.

واژه‌های کلیدی: مرمر، اسکارن، بروسیت، هیدرومیتی، روابط پارازنتیکی، نمودار عنکبوتی، REE
کانی شناسی مرمگرهاي بروسیت دار

مقدمه

منطقه مورد مطالعه در زون ساختاري ايران مرکزي، در 38 کیلومتری جنوب غرب بروک واقع شده است. به این صورت که شرکت‌های مختلفی از مایع مرکبین، مرغی‌السیمان، منطقه‌های مختلف، اندازه‌ها و افراد مختلفی از تولید‌کنندگان، برای ایجاد کالیسیک اجسام شدید از پراکندگی میکروسکوپی با استفاده از روشهای کلاسیکی انجام شده.

روش‌کار

پس از برداشت‌های صحرایی، مطالعات میکروسکوپی با استفاده از روشهای کلاسیکی اجسام شدید از پراکندگی میکروسکوپی نیز از X-ray ثبت شد. در مرکز کنش‌های هسته‌ای، این کالیسیک اجسام شدید نیز از روشهای نوین استفاده می‌شود. در مطالعات و روابط بازی‌شکنی کانی‌ها مطالعات میکروسکوپی و XRD مؤیت مجموعه کانی‌های زیر است:

1- پریکلاز - بروسیت - کلسیت - دولومیت
2- هیدرومیزیت - کلسیت
3- بروسیت - کلسیت - دولومیت
4- فرسترات - سپراتین - دولومیت

در ممرگرهاي بروسیتی دار، بروسیت به درون یافته می‌شود (الف). بروسیت های پراکنده میکروسکوپی در زمینه گرناوهی‌لستنیک دومین - کلسیت (شکل 1). اینکه بروسیتها در همبستگی با بازمانده‌های پریکلاز یافته می‌شوند. ب) بروسیت‌های رگجه ای که مشاهده شده‌ای که منحصر به شکستگی‌های موجود در مرمر را به می‌کند (شکل 2). اینکه بروسیت‌ها به صورت 10 cm مشاهده می‌شوند. فرسترات ها به صورت بلوهرهای به منفرد یا مجتمع در زمینه مرمرها دیده می‌شوند و از بخش‌های اصلی کامل به سپراتین نسبت می‌دهند تجزیه هیدرومیزیت به صورت بلوهرهای میکروسکوپی با تغییر در شکستگی‌های حاصل از پریکلاز یافته‌اند. ب) بروسیت‌های جانشینی شده است. این کانی‌ها به شکست‌ریزهای با رنگ‌های داخلی یا دیده می‌شود و برای تبیین آن منحصر به استفاده شده است. (جدول 1) روابط مختلف کانی‌ها را با در نظر گرفتن ارتباط بافتی آنها نظری بررسی و سپراتین به ترتیب به خرج پریکلاز.
و فرم‌سنجی می‌توان به صورت شکل 3 خلاصه کرد. همان‌طور که ملاحظه می‌شود شکل گیبری کانی‌ها در دو مرحله خشک و آب‌دار مشخص است.

جدول 1: داده‌های هیدرومنیزیت (رگچه خالص) XRD

********** JCPDS POWDER DATA INFORMATION**********
JCPDS CARD NO. = 8 - 179
FORMULA = Mg₄(OH)₂(CO₃)₃·3H₂O
NAME = MAGNESIUM CARBONATE HYDROXIDE
HYDRATE HYDROMAGNESITE I/Ic =
3 STRONG LINES (1) 5.790 100 (2) 2.901 90 (3) 2.150 50
D-1 PAIR NUMBER = 39

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
<th>D</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>9.186</td>
<td>40</td>
<td>6.444</td>
<td>40</td>
<td>5.790</td>
<td>100</td>
<td>4.581</td>
<td>5</td>
<td>4.471</td>
</tr>
<tr>
<td>06</td>
<td>4.211</td>
<td>20</td>
<td>4.051</td>
<td>5</td>
<td>3.811</td>
<td>10</td>
<td>3.501</td>
<td>10</td>
<td>3.310</td>
</tr>
<tr>
<td>11</td>
<td>3.211</td>
<td>5</td>
<td>3.151</td>
<td>5</td>
<td>3.090</td>
<td>5</td>
<td>2.901</td>
<td>90</td>
<td>2.840</td>
</tr>
<tr>
<td>16</td>
<td>2.870</td>
<td>5</td>
<td>2.691</td>
<td>30</td>
<td>2.630</td>
<td>5</td>
<td>2.500</td>
<td>30</td>
<td>2.420</td>
</tr>
<tr>
<td>21</td>
<td>2.350</td>
<td>5</td>
<td>2.300</td>
<td>30</td>
<td>2.200</td>
<td>5</td>
<td>2.150</td>
<td>50</td>
<td>2.090</td>
</tr>
<tr>
<td>26</td>
<td>2.030</td>
<td>5</td>
<td>1.990</td>
<td>20</td>
<td>1.966</td>
<td>5</td>
<td>1.930</td>
<td>10</td>
<td>1.900</td>
</tr>
<tr>
<td>31</td>
<td>1.860</td>
<td>5</td>
<td>1.840</td>
<td>5</td>
<td>1.820</td>
<td>5</td>
<td>1.756</td>
<td>5</td>
<td>1.740</td>
</tr>
<tr>
<td>36</td>
<td>1.670</td>
<td>5</td>
<td>1.650</td>
<td>5</td>
<td>1.620</td>
<td>30</td>
<td>1.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***************END OF INFORMATION***************
شکل ۲ - روابط پارازنتیکی کانی‌ها در مرمرهای بروسویت دار

<table>
<thead>
<tr>
<th>کانی</th>
<th>مرحله I</th>
<th>مرحله II</th>
<th>مرحله III</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دولومیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرسترت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پریکلاز</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بروسویت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هیدرومنیزیت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کانی شناسی مرمرهای بروسویت دار

- ورقه‌های بروسویت چسبیده به سطح سنگ مرمر، که در حقیقت به صورت رگه‌های شکستگی‌ها را پر کرده‌اند.
واکنش‌های دگرگونی

در منطقه مورد مطالعه نخست سنجش آهنک سازند ثبت به طور نامنظم دولومیتی شده است. این دولومیتی شدن به طور کلی در حاشیه‌های شرقی شیرکوه و حتی بدور از نواحی مادگامتسم صورت گرفته است. به نظر می‌رسد شاره‌های گرما‌آبی حاوی Mg۱⁺ منجر به دولومیتی شدن

بر اساس واکنش زیر شده‌اند:

\[
2\text{CaCO}_3 + \text{Mg}^{12}\text{(aq)} \rightarrow \text{CaMg(CO}_3)_2 + \text{Ca}^{2}\text{(aq)}
\]

برای تشکیل دیوپسید، و فرستریت و پریکلاز در مصرف‌ها با انفیش گرما می‌توان واکنش‌های زیر را در نظر گرفت:[۵]

\[
\text{Dolomite} + 2\text{Quartz} \rightarrow \text{Diopside} + 2\text{CO}_2 \\
\text{Diopside} + 3\text{Dolomite} \rightarrow 4\text{Calcite} + 2\text{Forsterite} + 2\text{CO}_2 \\
\text{Dolomite} \rightarrow \text{Calcite} + \text{Periclase} + 2\text{CO}_2
\]

علاوه بر این تشکیل فرستریت از واکنش دولومیت با کوارتز نیز محتمل است.

\[
2\text{CaMg(CO}_3)_2 + \text{SiO}_2 \rightarrow \text{Mg}_2\text{SiO}_4 + 2\text{CaCO}_3 + 2\text{CO}_2
\]

برای شکل گیری پروپیت تأثیر آب‌های گرم بر پریکلاز را در نظر می‌گیریم.

\[
\text{MgO} + \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2
\]

همچنین پروپیت به طور مستقل می‌تواند از تأثیر آب‌های گرم بر دولومیت شکل گیرد.

\[
\text{CaMg(CO}_3)_2 + \text{H}_2\text{O} \rightarrow \text{CaCO}_3 + \text{Mg(OH)}_2 + \text{CO}_2
\]

همراه با پروپیت - مربوط به نیز بر واکنش زیر:[۷] قابل توجه است.

\[
2\text{Mg}_2\text{SiO}_4 + 3\text{H}_2\text{O} \rightarrow \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_2 + \text{Mg(OH)}_2
\]

دولومیتی شدن از نوع تندیسی[۷] در طول حرکت و تغییر شاره‌های گرم به داخل سنگ‌های کربناتی پیش از دگرگونی مجاورتی رخ داده است. توجه به آخذ توالی هیدرومنزیت و کلیسیت که مشاهداتی می‌کند که به تأثیر کربنات و XRD یا تا زیر کربنات و داید نیز تا زیر کربنات و داید نیز تا زیر

\[
\text{Mg(OH)}_2 + 3\text{MgCa(CO}_3)_2 + 3\text{H}_2\text{O} \rightarrow \text{Mg}_4(\text{OH})_2(\text{CO}_3)_3 + 3\text{H}_2\text{O} + \text{CaCO}_3
\]

پیدایش هیدرومنزیت به طور مستقل از طریق جانشینی در رکچه‌های خالص پروپیت

\[
\text{Mg(OH)}_2 + \text{CO}_2 \rightarrow \text{Mg(OH)}_2 + \text{CO}_2
\]

نیز امکان پذیر است. می‌توان گفت که نفوذ CO۲ از عامل اصلی در امتداد شکستگی‌ها، یا هم‌هندی گیری هیدرومنزیت به خرج پروپیت‌ها به شکل زیر

\[
4\text{Mg(OH)}_2 + 3\text{O}_2 + 3\text{H}_2\text{O} + \text{1/2O}_2 \rightarrow \text{Mg}_4(\text{OH})_2(\text{CO}_3)_3 + 3\text{H}_2\text{O}
\]
همانطور که مشاهده می‌شود، این واکنش اکسیژن گیاهی، محوری به صورت همگام در آماده‌اند و در پیش‌بینی این واکنش مؤثر بوده‌اند. از آن‌ها گزارش گریزکاری در شرایط اکسیژنی عمل کرده‌اند.

کیفیت [8] نشان دهنده در تغییرات در هیدرومونتیت و تغییرات در هوازدگی به صورت سطحی و دارای در شکاف‌های موجود در بروسیت، را یادآور شده است.

داده‌های ذنوبی‌سازی برای بروسیت، سنتیکی رنگ‌های بروسیت و ارتباط آنها با سطح مغناطیسی زئولیت را نشان خواهند نشاند. (جدول 2) استفاده شد. به این منظور مقدار این عناصر (Sun) و (Pirm) در مراحل دوولومنتی و رگه بروسیت نسبت به ترکیب کم‌ترین حدود اولیه به‌عنوان دومین (شکل 4). با وجود برآورد بودن نمودار همان طور که دیده می‌شود همگام با و زئولیت به شکاف‌های پاک‌ترین تغییرات رنگ‌های بروسیت La و وجود یک روند مثبت پیانه کننده، تغییراتی از عناصر Lu افزایش عدد اتمی به چهار

الف) برپاورد رنگ سان

ب) برپاورد رنگ بروسیت
تعداد اسید و مقدار Ce و La در رکه بروسیت کمتر از سنگ میزبان است. زیرا این دو عنصر قادرند در ساختن کلسیت جانشین ترونتد. بنابراین تمرکز این دو عنصر در سنگ میزبان دومیتی بیشتر شده است. علاوه بر این وجود بیشتری Eu در رگچه‌های بروسیت نشان می‌دهد که در زمان شکل‌گیری رگچه‌ها، شاردهای فرگاسیته‌ای در اکسیسیون بالایی بوده‌اند. در نهایت، رگچه‌های بروسیت نشان دهنده این واقعیت است که اکسیاسیون بالایی بوده و شاردهای فرگاسیته‌ای در زمان شکل‌گیری رگچه‌های بروسیت هستند. این سنگ میزبان دومیتی است. در حقيقة می‌توان گفت که از بهبودگی داخلمی به وسیله یک سیستم گرمایی پس از مرحله اصلی دگرگونی شکل گرفته‌اند.

جدول 2: داده‌های رگچه‌های بروسیت و سنگ میزبان* (مقدار به ppb)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>رگچه بروسیت (ppm)</th>
<th>مرمردومیتی (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>312</td>
<td>0.33</td>
</tr>
<tr>
<td>Ce</td>
<td>0.46</td>
<td>1.08</td>
</tr>
<tr>
<td>Eu</td>
<td>0.15</td>
<td>1.89</td>
</tr>
<tr>
<td>Hf</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>La</td>
<td>0.76</td>
<td>0.49</td>
</tr>
<tr>
<td>Lu</td>
<td>0.22*</td>
<td>0.31*</td>
</tr>
<tr>
<td>Nd</td>
<td>0.91 (13.2)</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.18</td>
<td>0.47</td>
</tr>
<tr>
<td>Sm</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>Sr</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>Tb</td>
<td>0.81*</td>
<td>0.43*</td>
</tr>
<tr>
<td>Th</td>
<td>0.87*</td>
<td>0.87*</td>
</tr>
<tr>
<td>Tm</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>U</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>Yb</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Zr</td>
<td>0.41*</td>
<td>0.41*</td>
</tr>
</tbody>
</table>
برداشت

تکوین مرمره‌های بروسیت دار شرق شیرکوه در طی مراحل سه گانه و مستقل رخ داده است. در این خصوص می‌توان این مرمره‌ها را به عنوان مرمره‌های جنگل‌یابی یا پلی‌زینک در نظر کرد. الگوی داده های رئویگرافی بر این مسئله تأکید دارد که مرحله بروسیت‌زایی رگه‌ای در یک سیستم شستشوی داخلی گرماخ در محیط داخلی مرمره‌ای پیکلاژ دار هیچ صورت ناچیزی انجام گرفته است و در نهایت جانشینی هیدرومونتیت به جای بروسیت در زون اکسیدان و در سری‌ها و برخی به پیوسته است.

مراجع

1- کوهساری، امیرحسین، و مکی زاده، محمدعلی، (1373)، کاتی شناسی اسکارن‌های حاشیه شرق باتولیت شیرکوه، چکیده مقالات دومین سمینار بلوشنشانی و کاتی شناسی ایران، صفحه ۱۳۳.

2- نوری‌پورشن، ابراهیم، مکی زاده، محمدعلی، و شرافت، شهرزاد، (1374)، معرفی کاتی شناسی اسکارن‌های کوه دشت انتیک برکانی کمیاب کلیوتنیتی، کوه‌ستان شیرکوه - یزد، مجله بلوشنشانی و کاتی شناسی ایران، سال چهارم شماره ۱ و ۲، صفحه ۴۷-۳۷.

3- سیاه‌آری، مسیب، و علی‌یزدی مهابادی، سلیمان، (137۵)، گزارش مقدماتی مطالعات زمین شناسی و سنگهای سنگ‌رانی مرمره و اسکارن‌های منطقه ده بالا، یزد، مدیریت زمین شناسی منطقه جنوب خاوری مرکز کرمان ۳۵ صفحه.

4- داورودی، فریده، (137۷)، پژوهش‌های سنگ‌دانی اسکارن‌های منطقه شیرکوه، استان یزد (ده بالا، پایین آباد)، پایان نامه کارشناسی ارشد، دانشگاه اصفهان، ۲۹۶ صفحه.

