Quantitative X-ray methods of amorphous content and crystallinity determination of SiO\textsubscript{2} in Quartz and Opal mixture

Ketabdari, M. R. and Ahmadi, K.
Atomic Energy Organization of Iran, Laboratory Exploration Division,
P.O. Box 14155-1339, Tehran - 14374, Iran,
E-mail: ahmadikam@yahoo.com

Esmaeilnia Shirvani, A.
Faculty of Sciences, University of Shahid Beheshti, Iran

Tofigh, A.
NIOC Research Institute of Petroleum Industry

Key Words: XRD, Quantitative X-ray Diffraction Matrix Flushing, Crystallinity, Amorphous Content.

Abstract: X-ray diffraction (XRD) technique is commonly used for qualitative analysis of minerals, and has also been successfully used for quantitative measurements. In this research, the matrix flushing and a new X-ray diffraction method have been used for the determination of crystallinity and amorphous content of Opal and Quartz mixture. The PC-APD is used to determine the quantitative analysis of these two minerals.
آنالیز کمی و تعیین مقدار مواد بیشک و بلوری SiO_2 در مخلوط اوبال و کوارتز به روش کمی پراش سنگی پودر پرتو ایکس

محمدرضا گنابداری و کامران احمدی
آزمایشگاه آنالیز واحدهاکتشاف سنگهای انتهای ایران

عباس اسماعیلالی نیا شریانی
دانشکده علوم دانشگاه شهید بهشتی

عاطفه توفیق
پژوهشگاه صمت نفت

(دریافت مقاله 1380/9/13 دریافت نسخه نهایی 1380/11/10)

چکیده: در این مقاله که مواد حاصل در یک نمونه از اتمهای مشابه تشکیل شده باشند، استفاده از پودر اوبال برای اندازه‌گیری کمی نشان می‌دهد به حساب می‌آید. در این تحقیق برای تعیین کمی ماده بیشک و بلوری از دو روش ماتریکس فلاشینگ (Matrix Flushing) چانگ و روش ایجاد (بطری خودکار) استفاده شده است، و مقدار مواد بیشک و بلوری در نمونه‌های حاوی مخلوطی از کوارتز و اوبال مورد محاسبه قرار گرفته است.

واژه‌های کلیدی: آنالیز کمی، پراش سنگی پودری پرتو ایکس، روشنی ایکس فلاشینگ، بلورینگ، کوارتز، اوبال.
مقدمه

یکی از مواردی که در استفاده کمی و کیفی از پرداز سنج بودري پرتو ایکس ایجاد مشکل می‌کند حضور ماده بی‌شکل در نمونه است [1]. در عین حال، تعیین کمی مقدار ماده بی‌شکل و مقدار کمی بلورینگی از پردازه‌های متفاوتی برخوردار است [2]. و کاربردهای زیادی در صنعت دارند [3 و 4] مثلاً تعادل زیادی دارو به صورت بی‌شکل و بلوری می‌شود، و گاهی مواردی جنی افزودنی به دارو تنا به صورت بی‌شکل وجود دارند. موارد بی‌شکل در مقابل تغییرات فیزیکی و شیمیایی حساسیت بیشتری نشان می‌دهند و گاهی تغییر تابعیت مقدار ماده بلوری به بی‌شکل در بعضی از داروها باعث تغییر خواص آنها می‌شود. به همین خاطر اندوزه‌گیری کمی این در مقدار در صنایع دارویی بسیار مهم است [5].

در مورد بلیمرها نیز خواص فیزیکی-مکانیکی بلیمرها مهم صنعتی مانند پلی اتیلن، پلی پروپیلئن، پلی استر، و نیلولون تحت تأثیر درجه بلورینگی آنها قرار می‌گیرند. به همین جهت تعیین درصد مقدار تبدیل مواد بی‌شکل به بلوری در این دسته از مواد در شناخت و استفاده صنعتی از آنها اهمیت زیادی دارد. در مدل‌های مختلفی که برای نشان دادن خواص بلیمرها بر حسب ساختارشان در نظر گرفته شده است، همواره بلیمرها را به صورت مجموعه‌ای از بخش‌های بی‌شکل و بلوری در نظر می‌گیرند که این نسبت رابطه مستقیمی با خواص فیزیکی و مکانیکی بلیمر مزبور دارد.

در زمینه شناسی نیز با استفاده از این روش می‌توان به نوعی دماسنج عمیق استفاده کرد. وبتر (Weaver) نشان داد که با پایین‌رفتن در عمق زمین، درجه تبلور ایلیت بالا می‌روید و درجه چه بیشتری در عمق بیشتر شود، بر درجه بلورینگی ایلیت افزوده می‌شود. تا در نهایت به کاریت و سرسیت تبدیل شود [6]. با توجه به این مسئله، که کاریت‌ها در دماهای مختلف تشکیل می‌شوند، این دستاوردها را می‌توان از طریق تحولات الکتریکی رسی طی زمان بررسی و تابعیت درجه تبلور ایلیت مقایسه کرد. بنابراین با مقدار درجه تبلور ایلیت مقایسه کرد، در دماهای مختلف تشکیل می‌شوند.

کاربرد این روش در پی‌جویهای مخازن جدید نفت بسیار با سوپر می‌تواند است [1].
بلورینگی و پیشکی
بلورینگی را به صورت نسبت وزن بخش متابولیک به وزن کل تعیین می‌کنند. مقدار ماده بی شکل نیز به همین ترتیب، به صورت درصد وزن مقدار ماده بی شکل به کل وزن موجود تعیین می‌شود. در این صورت این دو تعیین مکمل یکدیگرند و نسبت‌شناسی عکس هم است. پرداز پرتو ایکس (XRD) از نمونه‌ای که دارای موادی به صورت بلوری و بی شکل باشد، به صورت خاصی ظاهر می‌شود. این معنا که بخشی که مربوط به ماده بلوری است به‌خاطر آنکه پرتوهای ایکس را به صورت یک‌نواخت پراکنده می‌سازد به صورت مجموعه‌ای از قله‌ها ظاهر می‌شود و بر عکس بخشی که مربوط به ماده بی شکل است، به‌دلیل پراکنش ناب‌نواخت پرتوها بدون هیچ قله‌ای به صورت یک دیده می‌شود (شکل 1). بدين ترتیب برای اجسام با ترتیب هر دو ماده بی شکل و بلورین، طیف پرتو پرتو ایکس آنها نیز به صورت تک‌کیه از این دو حالت قله و قله دیده می‌شودند. از همین خواص متمایز در پرداز پرتو ایکس آنها، برای محاسبه مقدار بلورینگی و درصد ماده بی شکل یک هر گرفته می‌شود استفاده از روش کمی پرداز سنجی پرتو ایکس یکی از متانسیرین روش‌های برای تعیین مقدار بلورینگی و ماده بی شکل در حالت‌های ذکر شده است.

روش ماتریکس فلشینگ
یکی از روش‌های کمی پرتو ایکس روش ماتریکس فلشینگ چانک [7] است. در حالتی که ماده بلوری و بی شکل از یک جنس باشند می‌توان از این روش استفاده کرد. این حالتی است که اغلب در پلیمر و بعضی از داروها دیده می‌شود و مشکل یک روابط (Klug & Alexander) ریاضی مربوط را به دست آورده‌اند [8]. شدت پرتو پرداز یافته برای با: \[l_a = K_a \chi_a / \{ \rho_a [\chi_a (\mu_a - \mu_m) + \mu_m] \} \]
است که در آن به ترتیب \(l_a \) شدت پرتو پردازشده از ماده \(K_a \) مقدار ثابت وابسته به جنس ماده، \(\chi_a \) درصد وزنی، \(\rho_a \) جتگیلی، \(\mu_a \) ضریب جذب جرمی آن، و \(\mu_m \) ضریب جذب جرمی ماتریکس است. در حالتی که تنها یک سیستم دو فازه وجود داشته باشد
شکل ۱- مقایسه دو طیف کوارتز خالص و اوبال خالص.

در آنها کوارتز و اوبال‌ها، مقادیر M و M_a برای خواص دقیق و نتایج حاصل خطی
بودن رابطهً بین شدت و دکلت است [7].

اگر پسوند (a) را نشان ماده به شکل و پسوند (c) را نشان ماده بلوری در نظر
پگیریم آنگاه:

$$l_a = \frac{K_a}{\rho_a \mu_a} \chi_a = K_a \chi_a$$

$$l_c = \frac{K_c}{\rho_c \mu_c} \chi_c = K_c \chi_c$$

و از آن جا

$$\frac{\chi_c / \chi_a}{l_c / l_a} = (K_c / K_a)$$

$$\chi_c + \chi_a = 1$$

$$k = (K_c / K_a)$$

که در آن k شیب خط و χ_a و χ_c در صدهای مقادیر بلوری و به شکل اند [7].

در حالت‌هایی که تعداد کانی‌ها در نمونه از دو بیشتر باشند، می‌توان از یک ماده سوم مانند
کریوئید به عنوان واسطه استفاده کرد و می‌توانید همستیا هم‌سنجی مربوط به ماند را رسم کرد.
ولی در حالتی که تا یک سیستم در فازه ساده در کار باشد به ماده سوم دیگر نیازی

[Downloaded from ijcm.ir on 2022-04-27]
نیست و می‌توان از رسم منحنی همسنجی نیز چشم پویشی کرد ولی رسم این منحنی بر دقت خواهد افزود.

روش کمی (APD)
روش‌های کمی موجود در نرم‌افزار (APD) و کاربردهای آن است که در مقاله جدایگرایی [9] مورد بررسی قرار گرفته‌اند. از آن جمله روش ماتریکس (APD) است که در این مقاله از آن بهره گرفته شده است و به روش ماتریکس فضاهای مشابه نیز دارد [10]. با استفاده از این نرم‌افزار نمونه‌های استاندارد پس از آماده‌سازی هایا لازم برای رسم منحنی همسنجی طیف‌گیری شده‌اند. پس از انجام آزمایشات لازم به نتایج زیر رسیدمیم.

نرم‌افزار برای طیف‌گیری های لازم برای رسم منحنی، تنها یک محل را برای کلیه نمونه‌ها طلب کرده و به حساب می آورد و این محل در مواردی که اختلاف موجود بین زمینه‌های دو فاز قابل توجه باشد ایجاد مشکل می‌کند. به طوری که وجود آمدن این مشکل روش جدیدی که آن را "نرم‌افزار" نامیدیم برای حل آن تدوین گردید.

تدوین روش نرم‌افزار (APD)
تدوین این روش به حساب مشکلاتی صورت گرفت که در عمل برای تعیین صحیح مقدار زمینه در موضع مطلوب به وجود می‌آید. این روش بر اساس داده‌های روش‌های قبلی استوار است ولی با این تفاوت که پیش از اول آن که شامل طیف‌گیری و تعیین مقادیر اندازه‌گیری شده قلم‌ها (سطح قله و یا ارتفاع) بود، مانند قبل براساس کامپیوتری و با استفاده از نرم‌افزار APD انجام پذیرفتند. در حالی که رسم منحنی‌های همسنجی و محاسبات انجام شده مربوط به آنها بهطور نرم‌افزار و با استفاده مقطعی از نرم‌افزار APD و سایر نرم‌افزارهای رایانه‌ای صورت گرفتند.

چنان‌که گفته شد، برتری این روش به حساب داشتن امکان‌های قابل مانور در اندازه‌گیری مقدار زمینه است که علت اصلی اختلال در اندازه‌گیری و محاسبه سطح با ارتفاع قله تشخیص داده شد. این اختلال به این خاطر است که محل اندازه‌گیری زمینه در کلیه نمونه‌های به کار گرفته شده ثابت بود.
مشخصات نمونه مورد بررسی و آماده‌سازی استانداردها
نمونه‌ مورد آزمایش از منطقه‌ای در جنوب اردبیل در مسير رودخانه‌ی زیبایی رودخانه‌ی ریویلی‌هواده، توجهال
شبیه‌ی داسسی و روباسی و توجه آندیزی و وجود دارند که از نظر سنتی منطقانه به اولیگوسن. کانی‌هایی اصلی این سنگ‌ها شامل پلاژیوکلاز، بیوئیت، فلدسپات آلیکال تجزیه
شده و کوارتز است. در این سنگ‌ها رگ‌های فراوانی از سیلیس تانیهی و اوبال شیری
رنگ مشاهده می‌شود. که گاهی ضخامت آنها به بیش از ۲۰ سانتی‌متر می‌رسد و
نمونه‌های مورد آزمایش از این رگ‌ها انتخاب شده‌اند. موقعیت زمین‌شناسی واحد
مشخص شده در شکل ۲ دیده می‌شود. و
نیز شکل ۲ رخ‌نمونه‌ای از سنگ‌هایی مذکور را در محل فوق الذکر به تصویر کشیده است.

شکل ۲ - موقعیت زمین‌شناسی نمونه‌های مورد مطالعه در سنگ‌های ریویلی (Or) جنوب اردبیل.
یک نمایش سنگ‌های برخی‌های حاوی زغال‌های سیلیسی و اوبال که نمونه‌های مورد مطالعه از آنها انتخاب شدند.

برای رسم منحنی‌های هم‌سنجی، از نمونه‌های مناسب کوارتز و اوبال خالص به عنوان استاندارد استفاده شد. این کانی‌ها پس از آماده‌سازی و پودر شدن بهصورت نسبتی صفر تا صد برای اوبال، و صد تا صفر برای کوارتز تهیه و مورد طیف‌گیری قرار گرفتند (شکل 4). با استفاده از این استانداردها نمونه مشخصی نیز با مقدار درصد معلوم (85٪ برای کوارتز و 15٪ برای اوبال) ساخته شد تا در بررسی کارآینی روش نیمه خودکار بکار گرفته شود.

آنالیزها در آزمایشگاه آنالیز واحد اکتشاف سازمان انرژی اتمی ایران با دستگاه فیلیپس مدل ۷۱۱۰ با مشخصات طیف‌گیری (Cu kα, ۴۰ kV, ۳۰mA) انجام شد.

نتایج روش کمی ماتریکس فلاش‌بندگی در مرحله اول، نرم‌افزار APD ساخت شرکت فیلیپس برای طیف‌گیری و رسم منحنی‌های هم‌سنجی بکار گرفته شد. در این مرحله تنا تنا روش کمی ماتریکس
شکل 4- طیف‌های استاندارد تشکیل شده از مخلوط آبیال و کوارتز با نسبت‌های مختلف.

فلزشیگ‌ها موجود در ترم‌افزار APD استفاده شد. حالت‌های مختلف ثابت شد که براساس

طیف‌می‌باشد سطح قله (شکل 5 و 6) و نیز ارتفاع قله مورد آزمایش قرار گرفتند، و

منحنی‌های همسنجی آنها رسم شدند در عین حال برای بررسی مشکل تعیین محل

زمینه، حالت‌های مختلفی در نظر گرفته شدند و مورد آزمایش قرار گرفتند.

نتایج روش نیمه‌خودکار (APD)

مقادیر ثابت شد که با استفاده از ترم‌افزار APD محاسبه و منحنی‌های همسنجی نیز با

اهداف از ترم‌افزار رسم شدند. منحنی‌های همسنجی کوارتز به دو صورت

ارتفاع قله (شکل 7 و سطح قله (شکل 8)) و نیز برای اوبال منحنی‌های همسنجی برای

دو حالت سطح و ارتفاع قله ترسیم شدند. در اینجا نیز بهترین پاسخ‌ها برای سطح قله

به دست آمده که اختلافی برابر 1/2 برای کوارتز و 0/5 درصد برای اوبال شده. شکل

البته این دو پاسخ مکمل یکدیگر بودند و مکمل بودن رابطه بین بلورین‌گی و بیب شکل

را نشان می‌دهد (شکل 9). نتایج بدست آمده از روشهای بالا در جدول 1 خلاصه

شدیده.
شکل 5- منحنی همستریچ روش ماتریکس فلشرینگ (کوارتز)

شکل 6- منحنی همستریچ روش ماتریکس فلشرینگ (آپال)
جدول 1- در این جدول پاسخهای حاصل از روش مانریکس فلاشینگ با (MF) و پاسخهای حاصل از روش نیمه خودکار با (SA) نشان داده شده اند:

<table>
<thead>
<tr>
<th>درصد اختلاف</th>
<th>درصد ماده موجود</th>
<th>شدت قله</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>88/2</td>
<td>(MF) کوارتز سطح</td>
</tr>
<tr>
<td>4/9</td>
<td>80/1</td>
<td>(MF) کوارتز ارتفاع</td>
</tr>
<tr>
<td>2/4</td>
<td>12/6</td>
<td>(MF) اوبال سطح</td>
</tr>
<tr>
<td>8</td>
<td>93</td>
<td>(MF) اوبال ارتفاع</td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>(SA) کوارتز سطح</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>(SA) کوارتز ارتفاع</td>
</tr>
<tr>
<td>2/5</td>
<td>12/5</td>
<td>(SA) اوبال سطح</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>(SA) اوبال ارتفاع</td>
</tr>
</tbody>
</table>

چنان‌که نشان داده می‌شود، نتایج بسیار خوبی از هر دو روش به دست می‌آید، ولی نتایج حاصل از روش نیمه خودکار از دقت بیشتری برخوردار است. برای مثال نتایج

![Graph](image_url)
شکل 8- منحنی هم‌سنجی روش نیمه‌خودکار (کوارتز).

شکل 9- رابطه بلورینگی و آمورف (کوارتز و اوپال).
آنالیز‌کردن مقادیر مواد به شکل و بلور SiO2 در مخلوط

حاصل برای کوارتز با روش تمام خودکار APD، 0/2 و 0/4 درصد اختلاف در مقابل روش نیمه خودکار 1 و 0/3 درصد بوذه است. در عین حال نتایجی که بر پایه اندازه‌گیری فلزهایی کوارتز استوارند در مقایسه با پاسخ‌هایی که بر پایه اندازه‌گیری فلز به شکل اولیه توصیف برای اولین بار توسط پاسخ‌های کوارتز که از طریق سطح قله اندازه‌گیری گرفته شده و در مقابل 1 درصد اختلاف برای اندازه‌گیری همگان قله‌ها از طریق ارتفاع، با توجه به نتایج موجود آمیزه به دست آمده از یک نمونه معلوم، این روش‌ها برای نمونه مجهول مورد نظر از منطقه مذکور به کار گرفته شدند و نتایج زیر بدست آمده:

1- روش تمام خودکار APD: 58/7\% کوارتز و 42\% اوبال
2- روش نیمه خودکار: 0/54\% کوارتز و 0/5\% اوبال

با توجه به نتایج نمونه‌هایی معلوم می‌توان گفت که نتایج حاصل از روش دوم (نیمه‌خودکار) به واقعیت نزدیکتر است.

برداشت

نمونه‌هایی به کار گرفته شده به عنوان استاندارد دارای خلوص کامل نیودند و در آنها مقداری ناخالصی به‌چشم می‌خوردند (شکل 1). خطای موجود در این نتایج به همین دلیل بوده است. مسلماً با به کارگیری استانداردهای مناسب و با درجه‌بندی خلوص بالا نتایج بهتری بدست خواهند آمد.

در روش‌های کاملاً خودکار نرم‌افزار APD که در برنامه‌های کمی تعبیه شده است، امکان تغییر زاویه‌ای که برای اندازه‌گیری مقدار زمینه تعیین می‌شود می‌سر می‌نیست. برای نمونه‌هایی که اختلافی در مقدار زمینه اجزای آن وجود دارد، روش نیمه خودکار با استفاده از نرم‌افزار APD پیشنهاد شد.

بدین ترتیب به نظر می‌آید که روش ماتریکس فلاش‌پسیگ مناسب‌ترین روش برای اندازه‌گیری کمی‌مقدار درصد ماده بلوری و به‌شکل در پلیمرها و مواد دارای پیش، و روش ایده‌آل نیمه خودکار در اندازه‌گیری های کمی مربوط به مواد معدنی که همراه با کاهی‌هایی از قبیل اوبال، لیموییت و پشته‌های همراه است، مناسب‌ترین باشند.
نوبستند کن مقاله از آقای مهندس سامانی مدیر کل واحد اکتشاف و استخراج سازمان انرژی اتمی ایران به مخاطر در انتخاب گزارش‌های استحکامات لازم برای اتمام باین تحقیق تشکر می‌نمایند.

مراجع

6- پژوهشگاه صنعت نفت خوزستان، جزوه آموزشی: کاربرد کانی‌های رسی در اکتشافات منابع هیدروکربوری.

9- محمد رضا کتابداری و کامران احمدی "آنالیز کمی SiO_2 در مخلوط کوارتز و BaBO_3H_3 با دستگاه دیفرانسیو و (XRD) اشعه ایکس (D)" مجله انرژی اتمی، در نویت چاپ.